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Abstract
We give an introduction to p-adic non-abelian Hodge theory and explain the statement of

the p-adic Simpson correspondence for smooth projective varieties. We then sketch the proof,
following [25] and focusing on the main ideas and their motivation.

These are lecture notes for a minicourse on the p-adic Simpson correspondence given at the
Brin Mathematics Research Center at the University of Maryland in November 2025.

1 Introduction to the p-adic Simpson correspondence
This note aims to give an introduction to the p-adic Simpson correspondence with an emphasis
on the comparison to complex geometry. This topic is currently very active, and this note is not
conceived as a survey article, or an overview of the broader area of p-adic non-abelian Hodge
theory. Rather, we focus on the motivation and statement of the p-adic Simpson correspondence
for smooth projective varieties, as well as the main ideas of its proof.

The goal of this first section is to explain from a purely algebraic-geometric perspective
what Hodge theory and non-abelian Hodge theory are about, and to explain by analogy the
goals of p-adic Hodge theory and p-adic non-abelian Hodge theory.

1.1 Hodge theory
We begin in complex geometry: Let X be a smooth projective variety over C.

Hodge theory is about comparing different cohomology theories of X: In this context, the
three classical cohomology theories associated to X that we are interested in are the following.

1. Betti cohomology:
Hn

B(X,C)
Here we consider X(C) as a topological space and consider its singular cohomology.

2. de Rham cohomology:
Hn

dR(X)

Here we consider X as a differentiable manifold and consider the cohomology of its de
Rham complex.

3. Hodge cohomology:
Hn

Hdg(X,C) :=
⊕

i+j=n

Hj(X,Ωi
X).

Here we consider X as an algebraic variety and make use of coherent cohomology.

1



Theorem 1.1 (de Rham, Hodge, 1930s). There are canonical and functorial isomorphisms

H∗
B(X,C) = H∗

dR(X,C) = H∗
Hdg(X,C).

The first is the de Rham comparison isomorphism, the second is called Hodge decomposition.

1.2 non-abelian Hodge theory
Non-abelian Hodge theory is about generalising results from Hodge theory to cohomology with
coefficients. In particular, it is about comparing categories of coefficients for these cohomology
theories:

1. Betti cohomology can be formed with coefficients in any C-local system L on X(C):

H∗
B(X,L).

This can be computed as the sheaf cohomology of L on the topological space X(C).
2. de Rham cohomology can be considered with coefficients in any vector bundle with flat

connection (E,∇)
H∗

dR(X, (E,∇))
defined as the cohomology of the de Rham complex associated to (E,∇).

3. Hodge cohomology can be defined for any Higgs bundle (E, θ): This is the datum of
a vector bundle E on X together with an OX -linear homomorphism θ : E → E ⊗ Ω1

satisfying a commutativity condition: This commutativity condition can be expressed
by saying that θ induces a homomorphism of OX -algebra SymOX

Ω∨
X → End(E). The

cohomology of a Higgs bundle (E, θ), the called “Dolbeault cohomology”

H∗
Dol(X, (E, θ))

is then defined as the hypercohomology of the Dolbeault complex, which is defined anal-
ogously to the algebraic de Rham complex.

All three categories turn out to be naturally equivalent: This is based on the work of many
people, culminating in two articles of Carlos Simpson in the 1990s:
Theorem 1.2 ([37],[38]). 1. There are natural equivalences of categories{

C-local systems
on X

}
←→

{
vector bundle with

flat connection on X

}
←→

{
Higgs bundles on X

semistable with ci = 0

}
The first is the classical Riemann–Hilbert correspondence, the second is the Corlette–
Simpson correspondence [37]. Here “ci = 0” means “vanishing Q-Chern classes”.

2. For any objects corresponding to each other under the equivalences in (i)

L ←→ (V,∇)←→ (E, θ),

there are natural isomorphisms of their respective cohomologies

H∗
B(X,L) = H∗

dR(X, (V,∇)) = H∗
Dol(X, (E, θ))

Simpson moreover proved in [38] that all three categories admit natural quasi-projective
coarse moduli spaces of rank n objects. For Betti and de Rham cohomology, the respective
moduli spaces are isomorphic. In contrast, Simpson shows that the de Rham and Higgs moduli
spaces are only real-analytically isomorphic. They are in general not isomorphic as complex
varieties, and in particular not as algebraic varieties (even for rank n = 1 and X a curve).

The goal of this course is to explain that there is a very similar story of all of
the above in p-adic geometry!

In order to explain this, we begin with the analogue of Hodge theory in p-adic geometry.
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1.3 p-adic Hodge theory

Let p be a prime and let X be a smooth projective variety over Cp := Q̂p, considered as an adic
space Spa(Cp). Originally, p-adic Hodge theory is about comparing different p-adic cohomology
theories for X (hence the name of this subject). This is a vast topic, one reason being that
there are in fact many meaningful p-adic cohomology theories that one could consider. In this
talk, we focus exclusively on the “Hodge–Tate” part of the story: This means that we compare
the following three cohomology theories associated to X:

1. Hodge cohomology: Since Hodge cohomology is completely algebraic, this can be
defined in exactly the same way as in the complex theory:

H∗
Hdg(X) =

⊕
i+j=∗

Hj(X,Ωi) as before

That being said, especially when we consider Galois actions, it is better in the p-adic
setting to replace Ωi by Ωi(−i) := HomZp(Zp(1)

⊗i,Ωi) where Zp(1) = lim←−k
µpk (Cp). We

can ignore this “Tate twist” by choosing a compatible system of p-th unit roots in Cp.

2. p-adic étale cohomology as defined by Grothendieck:

H∗
ét(X,Cp) :=

(
lim←−
n

H∗
ét(X,Z/pk)

)
⊗Zp Cp

3. v-cohomology as defined by Scholze [36][33]: For this we consider X as an adic space
over Cp and form the v-site of all perfectoid spaces over X:

Xv = PerfX equipped with the v-topology

This carries a natural structure sheaf O sending T 7→ H∗(T,OT ), making Xv into a ringed
site. One then simply defines

H∗
v (X,O)

as the internal cohomology of the ringed site (Xv,O).

Once again, it turns out that these three cohomologies can be compared to each other.
Once again, this result is due to the contributions of many mathematicians over an extensive
period of time, starting with Tate’s famous article about p-divisible groups [39] from 1967:

Theorem 1.3 (Tate [39], Raynaud, Fontaine, ..., Faltings [13], Scholze [34]). There are natural
isomorphisms

H∗
ét(X,Cp) = H∗

v (X,O) = H∗
Hdg(X).

The isomorphism between the first and third term is called Hodge–Tate decomposition. The
comparison between the first and second is the Primitive Comparison Theorem of [34].

The second isomorphism is actually not completely canonical: Rather, it depends on the
choice of a B2 := B+

dR/ξ
2-lift of X. There is a canonical choice of such a lift if we are given a

model X0 of X over Qp.

The Hodge–Tate decomposition of Theorem 1.3 may be regarded as a p-adic analogue of
the Hodge decomposition of Theorem 1.1. While it was already conjectured in this generality
by Tate (hence the name), it was ultimately proved by Faltings, and later by Scholze. In both
cases, the comparison uses v-cohomology (or, in Faltings’ case, a slightly different site which
for these purposes can be used to a similar effect): Even though the statement of the Hodge–
Tate decomposition only contains more classical objects like étale and coherent cohomology, it is
therefore reasonable to say that its proof goes through v-cohomology as a natural intermediary.
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1.4 p-adic non-abelian Hodge theory
In analogy to the complex story, p-adic non-abelian Hodge theory is about generalizing com-
parison theorems of p-adic Hodge theory to coefficient objects. The natural coefficient objects
for the three p-adic cohomology theories mentioned above are:

1. Hodge cohomology: Here we take Higgs bundles, as in the complex theory. Their
definition is purely algebraic, so we can make the same definition over Cp. There is only
one small subtlety: Once again, it turns out to be more natural to work with ΩX(−1)
instead of ΩX in the definition. This difference can be ignored after choosing compatible
unit roots in Cp.

2. p-adic étale cohomology: For this we use Cp-local systems, in analogy to Betti co-
homology over C. These are defined as the isogeny category of OCp -local systems, and
there are several ways to define the latter. Let us first give a classical definition, and
then explain a more modern one which will give a further indication for why v-covers are
useful in this context:

Definition 1.4. An OCp -local system on Xét is an inverse system (Lk)k∈N of OCp/p
k-local

systems on the usual étale site Xét with isomorphisms Lk+1/p
k ∼= Lk for all k.

For example, for any Zp-local system L, we obtain a Cp-local system L ⊗ Cp defined by
tensoring with OCp and inverting p.

Definition 1.5. An OCp -local system on Xv is a sheaf on Xv which is locally isomorphic
to On

Cp
where

OCp := lim←−OCp/p
k

is a pro-locally constant sheaf on Xv.

Proposition 1.6. Definition 1.4 and Definition 1.5 define equivalent categories.

To explain the proof, recall that over C, any local system becomes trivial on the topological
universal cover. There is an analogue of this over Cp: the diamantine universal cover

X̃ := lim←−
X′→X

X ′.

This limit is to be taken in Scholze’s category of diamonds over X. For smooth projective
curves of genus ≥ 1 or for abelian varieties over Cp, the diamond X̃ is in fact represented
by a perfectoid space [9][8]. The space X̃ → X is a very useful example of an object in
Xv. In fact, it is a πét

1 (X)-torsor in Xv, essentially by definition of the étale fundamental
group πét

1 (X), which is a profinite group.

Proposition 1.7. There is an equivalence of categories

RepCp
(πét

1 (X)) :=

{
continuous representations of πét

1 (X)
on finite dimensional Cp-vector spaces

}
−̃→

{
Cp-local systems on Xv

(as in Definition 1.5)

}
π1(X)→ GL(M) 7−→ X̃ ×M

/
πét
1 (X)

This also explains Proposition 1.6 because RepCp
(πét

1 (X)) is clearly the isogeny category
of continuous OCp -representations of π1(X). Since these have finite image mod pk for any
k, these are in turn equivalent to OCp -local systems in the sense of Definition 1.4.
This finishes the discussion of coefficients for p-adic étale cohomology: The upshot is that
already in this more classical setting, the perfectoid perspective provided by Xv turns out
to be helpful.
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3. Coefficients for v-cohomology:

Our category of coefficients for cohomology on Xv will simply be v-vector bundles. Once
again, like for étale cohomology, there are two slightly different definitions of this:

1. Faltings’ “generalized representations”, which are a coherent analogue of the classical
definition of Cp-local systems on Xét (Definition 1.4).

2. finite locally free O-modules on Xv, which are a coherent analogue of the v-topological
definition of Cp-local systems on Xv (Definition 1.5).

Once again, both categories turn out to be equivalent [22, Proposition 2.3]. In the following,
we shall work with the latter category.

A natural question in this context is how v-vector bundles can be compared to algebraic or
analytic vector bundles on X: To explain this, we recall that there are natural morphisms of
topoi

Xan ← Xét ← Xv

For smooth rigid spaces, these induce natural fully faithful functors{
vector bundles

on XZar

}
∼=
{

vector bundles
on Xan

}
∼=
{

vector bundles
on Xét

}
↪→

{
vector bundles

on Xv

}
.

The first two of these are equivalence of categories by rigid GAGA [28] and rigid étale descent
[10]. In contrast, the third is usually not essentially surjective. (See [23, §1] for a more detailed
discussion of vector bundles also in various other p-adic analytic topologies).

To get a better understanding of v-vector bundles, we first compare them to local systems:

Proposition 1.8 ([23, Theorem 5.2]). i) There is a natural fully faithful functor{
Cp-local systems

on Xv

}
↪→

{
v-vector bundles

on Xv

}
L 7→ L ⊗Cp O := V

ii) For any Cp-local system L and V := S(L), there is a canonical isomorphism

H∗
ét(X,L) = H∗

v (X,V)

This explains the comparison between coefficients for p-adic étale cohomology and v-vector
bundles. We note that from the concrete definition, this functor looks like a p-adic equivalent
of the Riemann–Hilbert functor. In fact, this analogy can be made more precise: Let us
mention in this context the work of Liu–Zhu [29], Min–Gao–Wang [17] and the upcoming work
of Bhatt–Lurie [5].

1.5 The p-adic Simpson correspondence
It remains to compare coefficients between v-cohomology and Hodge cohomology, namely
v-vector bundles and Higgs bundles. This is the content of the p-adic Simpson correspon-
dence, which is the main result of this lecture series. Once again, this is the result of the
work of many authors, starting around 2005 with articles of Deninger–Werner [11] and Faltings
[14] (who coined the name “p-adic Simpson”), and developed by Abbes–Gros–Tsuji [2][1][40],
Liu–Zhu [29], Wang [41] and many others.

In these notes we shall focus on the following projective version, because it is closest in its
formulation to the complex Corlette–Simpson correspondence:
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Theorem 1.9 (p-adic Simpson correspondence, Faltings [14], H. [25, Theorems 5.1 and 5.5]).
Let X be a smooth projective variety over Cp.

1. There is a natural equivalence of categories

S : {v-vector bundles on X} ←→ {Higgs bundles on X}.

It is a rank-preserving exact tensor functor.

2. Given any v-vector bundle V and (E, θ) := S(V ), there is a canonical isomorphism

H∗
v (X,V ) = H∗

Dol(X, (E, θ)).

Some comments about this Theorem:

1. The case V = O of part 2 recovers the Hodge decomposition

Hn
v (X,O) =

⊕
i+j=n

Hi(X,Ωj(−j)).

Hence the p-adic Simpson correspondence generalises the Hodge–Tate decomposition by
generalising it to coefficients. We learnt this perspective from Abbes–Gros–Tsuji [2].

2. The theorem holds more generally for any smooth proper rigid space over any algebraically
closed complete extension of Qp. In this note we focus on the projective case to simplify
both the exposition and the comparison to the complex story.

3. The functor S is not canonical, rather it depends on two choices:

i) A lift X of X along the square-zero thickening B2 → Cp. Such a lift always exists
(by Conrad–Gabber spreading-out, see [19]). If X comes from a model X0 over Qp,
there is a canonical such choice induced by the natural map Qp → B2.

ii) A p-adic exponential Exp : Cp → 1+mCp . This is defined as a splitting of the p-adic
logarithm log : 1+mCp → Cp by a continuous homomorphism. This always exists as
well, but this time there is no canonical choice.

Both choices are really necessary, and outside of trivial cases, one can in fact recover
both X and Exp from any given correspondence S. The “naturality” of S means that the
correspondence is compatible with respect to pullbacks that lift to the given B2-lifts.

4. Combined with Proposition 1.8, Theorem 3.1 yields a natural fully faithful embedding

RepCp
(π1(X)) ↪→ {Higgs bundles on X}

which underlines the analogy to the complex Corlette–Simpson correspondence. It is then
natural to ask whether the essential image can be described like in complex geometry:

Question 1.10 (Faltings). What is the essential image of this functor? Is it semistable
Higgs bundles with vanishing Q-Chern classes?

This is thought to be a really hard question. The answer is known only in certain special
cases, such as line bundles and abelian varieties, and partially in special cases such as
Higgs field 0 due to Deninger–Werner [11][12] and Würthen [42].
Like for the Hodge–Tate decomposition, the above faithful functor is between more classi-
cal objects, but its construction goes through v-vector bundles as a natural intermediary.
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1.6 The local p-adic Simpson correspondence
There is also a local version of the p-adic Simpson correspondence for non-proper varieties. In
fact, in contrast to the complex story, this was understood before the proper case, in extensive
works of Faltings [14][15], Abbes–Gros [2][1], Tsuji [2][40] and Wang [41]:

Theorem 1.11 (Local correspondence). Let X be any smooth rigid space with a given lift of
X to B2. Then there is an exact tensor equivalence of categories

{small v-vector bundle} ←→ {small Higgs bundle.}

In fact, Faltings’ strategy in [14] to prove Theorem 1.9 is to deduce the proper correspon-
dence in the case of curves from the above local correspondence by descent [14].

In comparison to Theorem 1.9, the local Theorem 1.11 does not require X to be proper,
and we can even drop the choice of exponential. The price we pay is that we only get a
correspondence for “small” objects, which roughly means “p-adically close to the trivial bundle”.
More precisely, for Higgs fields, smallness is a certain topological convergence condition for the
powers of θ.

One also has a comparison of cohomologies in this case. In fact, more generally, there is also
a derived version of this small correspondence [3]. From this one recovers the cohomological
comparison by considering RHom(O,−).

1.7 Summary of Talk I
The following diagram summarises how the comparisons between categories of coefficients for
cohomology theories discussed in this section fit together (the reader is invited to choose an
isomorphism C ∼= Cp to make everything fit into one picture):

C− analytic algebraic Cp − analytic

{
vector bundles
flat connection

} {
Higgs

bundles

} {
v-vector
bundles

}

RepC(π1(X))

{
C-local
systems

} {
Cp-local
systems

}
RepCp

(πét
1 (X))

Corlette

-Simpson

p-adic

Simpson

X̃

Riemann–Hilbert p-adic Riemann-Hilbert

X̃
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2 The case of rank one
In this section, we explain how to prove the p-adic Simpson correspondence in an easier special
case, namely for line bundles: Following [23], we will sketch the proof of the following result:

Theorem 2.1. Let X be any smooth proper rigid space over Cp. Then choices of a B2-lift X
of X and of an exponential Exp : Cp → 1 +mCp induce a natural equivalence of categories

S1 : {v-line bundles on X} ←→ {Higgs line bundles on X}.

This case turns out to be interesting and instructive: On the one hand, it is amenable to
explicit cohomological computation. On the other hand, several key ideas for the general case
are already visible in this context, for example it explains how lift and exponential get used.

From now on, we shall for simplicity ignore Tate twists by choosing an isomorphism Zp(1) =
Zp, i.e. a compatible system of unit roots in K := Cp.

2.1 Recollection on the Hodge–Tate sequence
We begin by noting that the isomorphism classes of objects on both sides of S are given by the
cohomology groups

H1
v (X,O×) and H1

an(X,O×)×H0(X,Ω1).

Our starting point is the observation that the envisioned comparison isomorphism between
these groups looks like a “multiplicative version” of the Hodge–Tate decomposition (Theo-
rem 1.3)

H1
v (X,O) = H1

an(X,O)⊕H0(X,Ω1),

in which “O gets replaced by O×”. We will therefore take inspiration from Scholze’s proof of
the Hodge-Tate spectral sequence [34][35], based on the earlier work of Faltings [13]. Let us
recall the main steps of its proof.

The idea is to consider the morphism of topoi

v : Xv → Xη̄

and its Leray spectral sequence:

Theorem 2.2. (Scholze [34][35], Bhatt-Morrow-Scholze [6]):

1. For any j ∈ N, there is a canonical isomorphism

Rjν∗OX = Ωj
X .

2. The Leray sequence
Ei,j

2 = Hi(X,Ωj
X)⇒ Hi+j

v (X,O)
degenerates at the E2-page.

Looking at the associated 3-term exact sequence of low degrees, this yields a short exact
sequence

0→ H1(X,O)→ H1
v (X,O) HT−−→ H0(X,Ω1

X)→ 0.

The datum of a B2-lift of X to B2 induces a splitting of this sequence: More precisely, it
already induces a splitting in the derived category (see [19, Theorem 7.4.9])

Rν∗O =

d⊕
i=0

Ωd
X [−d].
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2.2 The multiplicative Hodge–Tate sequence
It turns out that there is indeed a direct analogue of all results of the last subsection for O×

instead of O, which we call the “multiplicative Hodge–Tate sequence”:

Theorem 2.3. (H. [21, Corollary 2.19], Gerth [18, Theorem 3.26] )

1. For the morphism ν : Xv → Xét, there is for any j ≥ 0 a canonical isomorphism

Rjν∗O×
X =

{
OX j = 0,

Ωj
X j ≥ 1

2. The Leray sequence

Ei,j
2 =

{
Hi

ét(X,Ωj) j ≥ 1

Hi
ét(X,O×) j = 0

⇒ Hi+j
ét (X,O×)

degenerates at the E2-page.

Once again, we deduce in low degrees:

Corollary 2.4. There is a short exact sequence

0 −→ H1
an(X,O×) −→ H1

v (X,O×)
HTlog−−−−→ H0(X,Ω1) −→ 0

This already comes very close to giving the desired comparison of isomorphism classes: The
term in the middle classifies v-line bundles, whereas the direct sum of the outer terms classifies
Higgs line bundles!

2.3 Sketch of the proof of Theorem 2.3.1
For notational convenience, let us set K := Cp. We consider the subgroup 1 +mKO+ ⊆ O×.
This sits in short exact sequences of sheaves on Xét.

1 −→ 1 +mKO+ −→ O× −→ O× −→ 1

where O×
:= O×/(1 +mKO+). The first term in turn sits in a short exact sequence

1 −→ µp∞ −→ 1 +mKO+ log−−→ O −→ 1

of sheaves on Xét. This sequence is one of the reasons why in this context, we prefer to work
with Xét instead of Xan. Another is the following property:

Lemma 2.5 ([23, Lemma 2.17], [21, Proposition 4.1.]). The sheaf O× “commutes with limits”
in Xv. It follows from this that

ν∗O
×
= O×

Riν∗O
×
= 1 for i ≥ 1.

The logarithm now induces isomorphism for any i ≥ 1:

Riν∗O× ∼= Riν∗(1 +mKO+)
log−−→ Riν∗O ∼= Ωi.

where the last isomorphism comes from Theorem 2.2. All in all, this shows Theorem 2.3.1.
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2.4 Sketch of the proof of Corollary 2.4
In rank one, the fully faithful functor

RepCp
(π1(X)) ↪→ {v-vector bundles}

from Question 1.10 yields a commutative diagram

H1
v (X,O×) H0(X,Ω1)

Homcts(π1(X), 1 +mCp) H1
v (X, 1 +mCpO+) H0(X,Ω1)

Homcts(π1(X),Cp) H1
v (X,O) H0(X,Ω1)

HTlog

log log

HTlog

∼= HT

This also illustrates why HTlog got its name.

Now we can explain the role of the choices in the statement of the p-adic Simpson corre-
spondence:

1. The datum of a B2-lift splits the morphism HT on the bottom line.

2. The datum of an exponential induces a splitting of the map log on the bottom left.

In combination, these two splitting yield a splitting of the middle row, and thus of the top row.
All in all, this defines a splitting of the multiplicative Hodge–Tate sequence, Corollary 2.4:

H1
ν (X,O×) = H1

ét(X,O×)×H0(X,Ω1).

This explains the definition of the p-adic Simpson correspondence for line bundles, at least on
the level of isomorphism classes. (We refer to [23, §4.4] for more details on the above argument.)

2.5 Moduli spaces
We now sketch a second, different proof of Corollary 2.4, using moduli spaces. This will be
more work, but has the advantage to generalise: First, the moduli-theoretic argument gives
the more general result Theorem 2.3.2. Second, we will use a very similar moduli-theoretic
argument for proving exactness when we later consider higher dimensions.

Definition 2.6 ([20]). The diamantine étale Picard functor of X is the presheaf

PicX : Xv −→ Ab

T 7−→ H1
ét(X × T,O×)/H1

ét(T,O×).

The v-Picard functor of X is the analogous presheaf describing v-line bundles

vPicX : Xv −→ Ab

T 7−→ H1
v (X × T,O×)/H1

v (T,O×).

Theorem 2.7 ([20, Theorem 2.7]). Let X be any smooth projective variety over Cp.

i) PicX is represented by the analytification of the usual algebraic Picard functor of X.

ii) vPicX is represented by a rigid-analytic group.
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iii) There is a short exact sequence of rigid-analytic groups

1→ PicX → vPicX → H0(X,Ω1)⊗Ga → 0

It is worth pointing out that vPicX is genuinely a rigid-analytic object even though X is
algebraic, even if X is for example any smooth proper curve of genus ≥ 1.

From the last short exact sequence, we deduce the short exact sequence of Corollary 2.4
simply by taking Cp-points. In other words, Theorem 2.7 yields a geometrization of this se-
quence from abelian groups to rigid group varieties. The point is that this additional geometric
structure actually helps in proving the right-exactness, because it allows us to give a geometric
argument, as we now explain:

A variant of Theorem 2.3.1 for X replaced by X×T for any perfectoid T induces a left-exact
sequence

1→ PicX → vPicX → H0(X,Ω1)⊗Ga

To see that this is right-exact, we first observe that it is right-exact after inverting p: This
follows by comparing this sequence to character varieties, more precisely to the logarithm map

Hom(π1(X),Gm)
log−−→ Hom(π1(X),Ga).

Since the exponential defines partial splitting of log over an open subgroup of Ga, this shows
that the sequence is exact after inverting p.

The idea is now roughly to deduce from this that the Leray spectral sequence of ν considered
for X × T for any perfectoid T induces a long exact sequence of cohomology sheaves

1→ PicX → vPicX → H0(X,Ω1)⊗Ga
∂−→ H2(X,µp∞).

Since the third term H0(X,Ω1) ⊗ Ga and fourth term H2(X,µp∞) are represented by rigid
groups, the morphism ∂ has to be represented by a homomorphism of rigid groups, too. But
the third term is connected while the fourth term is locally constant. Hence ∂ = 0.

A generalisation of this kind of geometric homological argument is how Gerth proved The-
orem 2.7.2.

A nice consequence of this approach via moduli spaces is that it yields a moduli-theoretic
version of the p-adic Simpson correspondence, so far for line bundles:

Corollary 2.8 ([24]). Let Higgs1 := PicX × H0(X,Ω1) ⊗ Ga be the moduli space of Higgs
bundles of rank one, considered as a rigid space. Then vPicX and Higgs1 are both PicX-torsors
over H0(X,Ω1)⊗Ga, but the latter is split while the former is not.

As it turns out, this kind of description generalises to higher rank [27].
One advantage of the moduli-theoretic approach discussed in this subsection is that it

generalises in a way that we will use in the general construction of the p-adic Simpson functor.
Another advantage is that it can be used to answer Faltings’ question about the essential

image of representations (Question 1.10) in the special case of line bundles [24].
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3 Proof of the p-adic Simpson Correspondence
In this last section, we now give a sketch of the proof of the p-adic Simpson correspondence
(following [25]) for proper smooth varieties in higher rank:

Theorem 3.1. Let X be a smooth proper rigid space. The choices of a lift X of X and an
exponential Exp : Cp → 1 +mCp lead to an equivalence of categories

S : {v-vector bundles on X} ←→ {Higgs bundles on X}.

Our starting point is the basic idea that (at least generically and for curves) one can try to
reduce p-adic Simpson in higher rank to the case of line bundles of §2 by abelianization:

3.1 An idea that doesn’t immediately work but is still helpful
Let (E, θ) be any Higgs bundle on X. We recall that by definition, this is a vector bundle on
X together with an OX -linear homomorphism θ : E → E ⊗ Ω1 that induces a homomorphism
of OX -algebras

θ : Sym Ω1∨
X −→ End(E).

Let B := im θ = Sym Ω1∨
X / ker θ be its image: This is an OX -algebra which combines the

desirable properties of Sym Ω1∨
X and End(E), namely it is commutative (because Sym Ω1∨

X is)
and OX -coherent (because End(E) is). Moreover, via the tautological map B → End(E), this
algebra acts on E.

Assume now first that X is a curve. We now follow an observation due to Beauville–
Narasimhan–Ramanan [4]: For any “generic” (E, θ) on a curve X, the B-action makes E
into an invertible B-module. Consequently, we can write (E, θ) as the pushforward

(E, θ) = π∗(L, τ)

of a Higgs line bundle (L, τ) along the finite flat cover

π : X ′ := Spa(B)→ X.

For a generic Higgs bundle, this “spectral curve” X ′ is even a connected smooth proper curve.

With this in mind, a first idea for the proof of (the generic case in the special case of curves
of) the p-adic Simpson correspondence in higher rank would be to consider the diagram

{Higgs line bundles on X ′} {Higgs bundles on X}

{v-line bundles on X ′} {v-vector bundles on X ′}

π∗

S1

π∗

and use the p-adic Simpson correspondence for line bundles on X ′ from Theorem 2.1. This is
a first rough idea of what “abelianization” could mean in this context: Reducing the case of
GLn to that of Gm on the spectral curve X ′.

Problem: Unfortunately, even under the additional assumptions (X curve, X ′ smooth),
this strategy does not immediately work: One issue is that pushforward of v-sheaves along
finite flat ramified maps does not preserve v-vector bundles. Indeed, not even π∗OX′ is a finite
flat OX -module on Xv in this context! The reason is that “finite flat” is not a good notion
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for morphisms of diamonds, as it is not preserved under pullback (this is related to Bhatt–
Scholze’s perfectoidization [7, §8]). In other words, we do not have base-change of coherent
modules along the diagram

X ′
v Xv

X ′
ét Xét

Solution: The key idea is to work locally on Xv rather than on X ′: To explain this, recall
that in classical algebraic geometry, a line bundles on X ′

ét is the same as an invertible π∗OX′
ét

-
module on Xét. But for v-vector bundles, this makes a crucial difference! The latter concept is
the one that we will use, as it will explain how to implement the idea of “pushforwards of line
bundles”. Much better, it will at the same time allow us to improve the above discussion from
curves to higher dimension.

3.2 From Higgs bundles to v-vector bundles
We now explain how to construct the functor “←” from Higgs bundles to v-vector bundles in
Theorem 3.1: Let (E, θ) be a Higgs bundle. Like in the last section, we consider the sheaf on
Xét

B := im
(
SymΩ∨ θ−→ End(E)

)
.

Let B := ν∗B be the associated OXv -algebra on Xv.
The plan will be to construct a certain invertible (i.e. locally free of rank one) B-module L

on Xv and define the p-adic Simpson functor as

S−1(E, θ) := ν∗E ⊗B L.

To construct L, we will use moduli spaces of invertible B-modules, for which we will gener-
alize the v-Picard functor vPicX from §2.

To explain this, we will in the following assume that B is locally free. The purpose of this
assumption is just to simplify the exposition by avoiding some technical complications. It is
harmless for curves, but the case of general coherent B is really needed in higher dimension.
Making this possible is the main reason why we replace Xv by the much more restrictive pro-
étale site Xproét in [25]: The structure sheaf of the latter behaves as if it was “flat over OX ”
(which is definitely false for Xv), making it better suited to deal with general coherent modules.

3.3 Hodge–Tate theory for B
Invertible B-modules are a generalisation of v-line bundles, which are the special case of B =
OX . In §2, we understood v-line bundles by first dealing with O and then passing to O×. In the
same vein, in order to understand invertible B-modules, we therefore first have to understand
the v-cohomology of B. This is what we explain in this subsection, (following [25, §2]):

Proposition 3.2. i) We have a short exact sequence

0→ H1
ét(X,B)→ H1

v (X,B) HT−−→ H0(X,B ⊗ Ω1)→ 0

ii) The sequence is split by the choice of lift X of X.

13



Proof. Since B is assumed to be locally free, both follow immediately from the projection
formula, which says

Rν∗ν
∗B = B ⊗OX RνX∗O.

Recall that the lift X induces a decomposition

RνX∗O ∼=
⊕

Ωi[−i]

⇒ RνX∗B ∼=
⊕

Ωi ⊗B[−i].

A more conceptual way to see the splitting, which also explains how the B2-lift enters
the description, is to use the Higgs–Tate torsor of Abbes–Gros, based on the earlier work of
Ogus–Vologodsky [30]: This is the sheaf on Xv defined by

LX :=

homomorphisms φ of B2-algebras
ν−1OX/t

2 B+
dR/t

2

ν−1OX OX

φ


where B+

dR/t
2 → O is a square-zero thickening of the structure sheaf on Xv analogous to the

map B2 → Cp. By deformation theory, LX is a ν∗Ω∨
X -torsor on Xv (here we recall that we

have chosen an isomorphism Zp(1) = Zp and hence an element t ∈ B2). For any element of
H0(X,B ⊗ Ω1), pushout along the associated map Ω∨

X → B defines a splitting of HTB :

H0(X,B ⊗ Ω1)→ H1
v (X,B).

In particular, the tautological class τ in H0(X,B ⊗ Ω1) associated to the natural projection
SymΩ∨ → B defines a canonical B-torsor on Xv.

3.4 The multiplicative Hodge–Tate sequence for B
We are now ready to generalise the constructions for Gm from §2 to B×. The key to this is the
definition of moduli spaces of invertible B-modules that generalise the v-Picard variety:

We recall that we assume B to be an OX -coherent SymΩ∨-algebra that is locally finite free
as an OX -module, and B := ν∗B.

Definition 3.3. The Picard functor of B on X is

PicB : Xv −→ Ab

T 7−→ H1
ét(X × T,B×)/H1

ét(T,B
×).

The v-Picard functor of B on X is

vPicX : Xv −→ Ab

T 7−→ H1
v (X × T,B×)/H1

v (T,B×).

The following description of these functors generalises Theorem 2.7, which we recover as
the case of B = OX with trivial SymΩ∨-action.
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Theorem 3.4 ([25, Theorem 2.4]). 1. There is a natural short exact sequence of abelian
sheaves on Xproét ⊂ Xv

0→ PicB → vPicB
HTlog−−−−→ H0(X,Ω1 ⊗B)⊗Ga → 0

which is representable by rigid group varieties.
2. The induced sequence of Lie algebras (i.e. tangent spaces at the identity) is precisely the

Hodge–Tate sequence of B:

0→ H1
ét(X,B)→ H1

v (X,B) HTB−−−→ H0(X,Ω1 ⊗B)→ 0

3.5 Construction of the p-adic Simpson functor
According to Proposition 3.2, the datum of the lift X induces a splitting of HTB

sX : H0(X,Ω1 ⊗B)→ H1
v (X,B).

It remains to explain the role of the exponential. This is done by the following result in the
theory of rigid group varieties (whose proof is tied to p-adic Hodge theory of p-divisible groups):
Theorem 3.5 (Faltings [14], Fargues [16], H.–Werner–Zhang [26]). Let G be a rigid group for
which there is an open subgroup on which [p] is surjective. Then the datum of an exponential
induces a functorial Lie group exponential

ExpG : LieG→ G(Cp).

It is easy to deduce from Theorem 3.4 that the rigid group G = vPicB satisfies the assump-
tions of Theorem 3.5. We conclude that there is a natural exponential map

ExpvPicB
: H1

v (X,B×)→ H1
v (X,B).

In summary, we thus obtain a splitting of HTlog on Cp-points:

H1
v (X,B×) H0(X,Ω1 ⊗B)

H1
v (X,B) H0(X,Ω1 ⊗B)

HTlog

ExpvPicB

sX

Now we use the canonical element τ ∈ H0(X,Ω1 ⊗ B) corresponding to the natural map
SymΩ∨ → B and set

L := Exp(sX(τ)) ∈ H1
v (X,B×).

This gives the desired invertible B-module that we use to define the p-adic Simpson functor!

Caveat: This only defines an isomorphism class of L. To obtain a canonical and functorial
representative L, we use in [25, §3] a “rigidification at every point of X”, a method that we
learnt from Faltings.

In summary, the p-adic Simpson functor from Higgs bundles to v-vector bundles is now
given by sending a Higgs bundle (E, θ) with associated algebra B to

ν∗E ⊗B L.

In fact, one can show that the local correspondence Theorem 1.11 can be obtained by a similar
twisting construction. In particular, this shows:
Corollary 3.6 (Proposition 4.7). The p-adic Simpson functor is compatible with the local
correspondences after localisation.
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3.6 The canonical Higgs field on v-vector bundles
At this point we have given a functor from Higgs bundles to v-vector bundles. In order to see
that this is an equivalence, we now construct a functor in the other direction: from v-vector
bundles to Higgs bundles. For this we need to explain how we can twist v-vector bundles by
B-modules. This relies on the canonical Higgs field of v-vector bundles, first described by Pan
and Rodríguez-Camargo in the context of Geometric Sen theory.

Recall: The functor

{Cp-local systems} −→ {v-vector bundles}, L 7→ L⊗Cp O

is a p-adic analogue of the Riemann–Hilbert functor

{C-local systems} −→ {holomorphic vector bundles}, L 7→ L⊗C O

Over C, the vector bundle V = L ⊗C O comes equipped with a natural additional structure:
the differential d : O → Ω1 induces a flat connection ∇ : V → V ⊗ Ω1.

Over Cp, we cannot expect to obtain such a connection because d : O → Ω1 does not
extend to a morphism of sheaves on Xv. Nevertheless, it turn out that there is an analogue
of the flat connection from the Riemann–Hilbert correspondence in this context. In fact, it is
conceptually more closely related to p-curvature in characteristic p:

Theorem 3.7 (Pan [31, §3], Rodríguez Camargo [32], [25, Theorem 4.8]). Let S be any smooth
rigid space over a perfectoid field over Qp. Then any v-vector bundle V on S is endowed with
a canonical Higgs field

θV : V −→ V ⊗OX ν∗Ω1

that is uniquely determined by the following properties:

1. θV is functorial in S and V ,

2. θV = 0 ⇐⇒ V is analytic-locally trivial.

3. If V is small, then via the local p-adic Simpson correspondence of Theorem 1.11{
small

v-vector bundles

}
←→

{
small

Higgs bundles

}
it corresponds to the morphism of Higgs bundles tautologically defined by θ:

E E ⊗ Ω1

E ⊗ Ω1 E ⊗ Ω1 ⊗ Ω1

θ

θ θ

θ

3.7 From v-vector bundles to Higgs bundles
Equipped with the canonical Higgs field, we can now obtain an analogue of abelianization for
v-vector bundles: For any v-vector bundle V , the canonical Higgs field defines a canonical and
functorial morphism

θV : SymΩ∨ → ν∗End(V ).

It is easy to see locally that its image is a coherent OX -algebra B. The natural morphism
B → ν∗End(V ) induces by adjunction a morphism

B := ν∗B → End(V ).
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Via the construction of the previous section, lift and exponential induce an invertible B := ν∗B-
module L. We then define the p-adic Simpson functor to be

S(V ) := ν∗
(
(V, θV )⊗B L−1

)
The remaining calculation is now:

Proposition 3.8 ([25, Proposition 4.13.]). S′(V ) := V ⊗B L−1 is an analytic-locally trivial
v-vector bundle on X.

Proof. It is clear that S′(V ) is a v-vector bundle endowed with a Higgs field. It suffices to
prove that S′(V ) is étale-locally trivial. For this we use Corollary 3.6, which says that the local
correspondence Theorem 1.11 is also given by twists of B-modules. This shows that étale-locally
where V is small, it is associated to a Higgs bundle via twisting with L. Clearly, − ⊗B L−1

undoes this twisting, meaning that S′(V ) is étale-locally isomorphic to an étale Higgs bundle.
Hence it is étale-locally trivial.

This shows that S(V ) := ν∗S
′(V ) is a Higgs bundle on X of the same rank as V .

This defines the p-adic Simpson functor on objects. To show that this construction is
functorial, it suffices to note that there is some flexibility in the choice of B: Instead of defining
it to be the image of SymΩ∨ → End(E), we can for any second Higgs bundle (E′, θ′) with a
morphism (E, θ)→ (E′, θ′) replace B by the image of SymΩ∨ → End(E)⊕ End(E′), which is
still an OX -coherent commutative algebra. Moreover, the construction of L was natural in B.
From this one easily verifies that the construction in both directions is functorial.

This finishes the construction of the p-adic Simpson functor!

3.8 Outlook
1. The construction of the p-adic Simpson functor was ultimately in terms of twisting by

invertible modules. In upcoming work of Bhatt–Zhang [5], this is explained in a very
nice geometric way by way of a canonical Gm-gerbe on the cotangent bundle, called the
Simpson gerbe. From this perspective, the choices in the p-adic Simpson correspondence
are related to the fact that the Simpson gerbe is not split.
In work-in-progress of Bhatt–Kanaev–Mathew–Vologodsky–Zhang, it will moreover be
explained how this can be related to mod-p non-abelian Hodge theory, namely the gerbes
of differential operators appearing in the work of Ogus-Vologodsky [30].

2. We saw in §2 that for line bundles, there is a moduli-theoretic incarnation of the p-adic
Simpson correspondence: The moduli space of v-line bundles is an étale twist of the
moduli space of Higgs bundles. This in particular explains why choices are necessary to
formulate the p-adic Simpson correspondence: They are used to trivialise the twist on
points.
In joint work with Daxin Xu [27], we showed that a very similar picture holds more
generally in higher rank: The stack of v-vector bundles of rank n is a twist of the stack of
Higgs bundles of rank n, at least for curves. [Here we could insert a reference to Daxin’s
contribution to proceedings]
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