
Chapter 1

Perfectoid Spaces
Ben Heuer

The purpose of this course is to give an introduction to the theory of perfectoid spaces. We
first give a summary of some basic constructions in perfectoid geometry. Second, we aim to
give an idea of how perfectoid spaces arise “in nature” and how they are used: We discuss the
pro-étale site and applications to p-adic Hodge theory, namely the construction of the Hodge–
Tate spectral sequence. Our focus lies on discussing motivation, examples and the big picture,
and less on completeness or technical details. But we at least give key ideas for all main proofs.

1.1 Lecture 1: Perfectoid fields

Once and for all, let us fix a prime number p ∈ N.
Perfectoid spaces are a class of geometric objects in non-archimedean geometry

over Zp that were introduced by Peter Scholze in his 2012 PhD thesis at the University
of Bonn [Sch12]. They have had a great impact on p-adic geometry over the course of
the past decade. By way of motivation, we start in Lecture 1 by introducing the very
first instance of “perfectoid objects”, namely perfectoid fields. We will use these to
motivate some basic “perfectoid” constructions, especially tilting and untilting.

1.1.1 Infinite ramification in valued fields

1.1.1.1 The field of Laurent series over Fp. Let us start our journey with the ring
of formal power series R = Fp[[t]] over the finite field Fp. This is a discrete valuation
ring with uniformizer t. We recall what this means concretely: R is a commutative
ring with a “discrete valuation”. namely the function

vt : R→ Z ∪ {∞}, f =
∞∑
n=0

antn 7→ inf{n ∈ Z≥0 s.t. an , 0}

satisfies the axioms of a valuation from [Ber, §1.2]. That t is a uniformizer means that
v(t) = 1. In fact, R is a complete discrete valuation ring, since we moreover have

R = lim←−−
n∈N

R/tn.
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As is true for any discrete valuation ring, the fact that t is not a unit implies that
K := R[t−1] is a valued field: the field of Laurent series K = Fp((t)). Its elements
can be written as formal series

f =
∞∑

n≥m
antn for some m ∈ Z,

with valuation still given by

vt : K → Z ∪ {∞}, f 7→ inf{n ∈ Z s.t. an , 0}.

Since R is t-adically complete, K is a non-archimedean field (as defined in [Ber,
Example 1.1.2.3]) of characteristic p with finite residue field. Hence it is a local field.
If you are geometrically minded, you can think of K as the functions on the punctured
infinitesimal neighbourhood of

0 ∈ A1
Fp

:= Spec(Fp[t]).

1.1.1.2 Reminders on Frobenius and ramification. Like any ring of characteristic
p, the field K := Fp((t)) has the field endomorphism

F : K → K, x 7→ xp,

called the Frobenius endomorphism, or simply Frobenius. Concretely, in terms of
Laurent series, this sends ∑

antn 7→ ∑
antnp

because ap = a for any a ∈ Fp. Observe that as a morphism of rings, F is finite of
degree p and generated by t, namely a basis is given by 1, t, . . . , tp−1. We can thus
regard F : K → K as a finite field extension.

As a finite field extension, the Frobenius is ramified. What does this mean?
• Geometrically, F is the generic fibre of the completion of the morphism

A1
Fp
→ A1

Fp
, t 7→ tp

at the origin 0 ∈ A1
Fp
. Note that the degree of the morphism is p, but 0 is the only

geometric point over 0. Hence the morphism is ramified over 0. More precisely,
F : K → K is a totally ramified extension of ramification index p.

• Algebraically, F being ramified means the following: It is convenient to renorm-
alise the codomain of F via the rescaling isomorphism

r : Fp((t))
∼−→ Fp((t1/p)), t 7→ t

1
p ,

where on the right, we consider t1/p as a formal variable that satisfies (t1/p)p = t.
Then we can identify F with the canonical inclusion

ι := r ◦ F : Fp((t)) ↪→ Fp((t1/p)).
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To make this compatible with valuations, we renormalise the valuation on the
codomain:

vt : Fp((t1/p)) → 1
pZ ∪ {∞}, t1/p 7→ 1

p .

The morphism F is then compatible with the valuations, in the sense that the
following diagram commutes:

Fp((t)) Fp((t1/p))

Z ∪ {∞} 1
pZ ∪ {∞}

vt

ι

vt (1.1)

It follows that the quotient of the value groups on the bottom line is given by
Z/pZ (recall that the value group is what’s left when you forget about “∪{∞}”).
The order p = #Z/pZ of this quotient is the ramification index e(L |K) of ι, where
L = Fp((t1/p)). In this language, the field extension ι is totally ramified because

e(L |K) = [L : K].

This is the algebraic (valuation theoretic) sense in which F is totally ramified.

1.1.1.3 The Frobenius tower. We now iterate the Frobenius morphism, that is, we
form the tower

Fp((t))
F−→ Fp((t))

F−→ Fp((t)) → . . .

Iterating the rescaling procedure via ι from before, this tower becomes isomorphic to

Fp((t)) ↪→ Fp((t1/p)) ↪→ Fp((t1/p2)) ↪→

We now form the colimit of this diagram and arrive at the field

K∞ := lim−−→n∈N
Fp((t1/pn )).

As the renormalised valuations from (1.1) are compatible in the tower, K∞ inherits a
natural t-adic valuation

vt : K∞ → Z[ 1
p ] ∪ {∞}

defined as the colimit of the valuations of Fp((t1/pn )) for each n. Explicitly, every
element f ∈ K∞ can be written uniquely as a formal sum

f =
∑

m∈Z[ 1
p ]

amtm

such that am = 0 for m small enough. Then vt ( f ) = inf{m s.t. an , 0}.
This makes K∞ a valued field. However, this valued field is no longer complete!
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Example 1.1.1. The sequence ( fn :=
∑n

m=0 tm+
1

pm )n∈N converges in K∞, because the
difference fn − fk is divisible by tn for any k, n ∈ N with k ≥ n. In terms of formal
power series, the limit of the sequence ( fn)n∈N should be

∑∞
m=0 tm+

1
pm , but this is not

contained in any of the Kn, hence it cannot be contained in the colimit K∞.

1.1.1.4 Our first perfectoid field.

Definition 1.1.2. Let Fp((t1/p∞)) be the completion of K∞ with respect to the t-adic
valuation. Explicitly, we can construct this by first forming the valuation ring of K∞:

R∞ := lim−−→n
Fp[[t1/pn ]].

Then
Fp[[t1/p∞]] := lim←−−d∈N R∞/td, Fp((t1/p∞)) := Fp[[t1/p∞]][ 1t ].

Remark 1.1.3. The notation Fp((t1/p∞)) is arguably a bit ambiguous, as one might be
led to think that it refers to K∞. However, this notation is a very common convention.1

Exercise 1.1.4. (1) Give an explicit description of Fp[[t1/p∞]] in terms of formal
power series of the form

∑
m∈Z[ 1

p ]≥0
amtm with am ∈ Fp. Which formal series

indexed by Z[ 1
p ]≥0 are included in Fp[[t1/p∞]]? Give an explicit example of a

formal series of the form
∑

m∈Z[ 1
p ]≥0

amtm with am ∈ Fp that is not contained
in Fp[[t1/p∞]].

(2) Give an explicit description of Fp((t1/p∞)) in terms of formal power series of
the form

∑
m∈Z[ 1

p ]
amtm with am ∈ Fp.

(3) Convince yourself that R∞ is a valuation ring because it is a filtered colimit of
valuation rings. Describe the maximal ideal m∞ of R∞. Prove that the residue
field of Fp((t1/p∞)) is still Fp. So extending from Fp((t)) to Fp((t1/p∞)) did
not change the residue field.

(4) Note that we completed R∞ with respect to the ideal (t) spanned by the
pseudo-uniformizer t, not with respect to the maximal ideal m∞ of R∞, as
we would usually do when dealing with discrete valuation rings. What would
happen if we took the maximal ideal instead, i.e. what is lim←−−d∈N R∞/md

∞?

(5) Show that Fp[[t1/p∞]] is a complete valuation ring. Describe its maximal
ideal. Show that the maximal ideal is not finitely generated. In particular,
Fp[[t1/p∞]] is not Noetherian!

1Technical remark: Categorically speaking, this is because there is only one reasonable
meaning to Fp((t1/p∞ )) when we work in the category of non-archimedean fields. Indeed, recall
that by definition in [Ber, Example 1.1.2.3], a non-archimedean field is complete. Hence, the
categorical colimit in non-archimedean fields is the completed colimit Fp((t1/p∞ )) from Defin-
ition 1.1.2.



Perfectoid Spaces 5

As the maximal ideal of the valuation ring Fp[[t1/p∞]] is no longer principal, it no
longer makes sense to speak of uniformizers (i.e. a generator ofmK ). Instead, we use:

Definition 1.1.5. When A is a valuation ring with valuation v, any 0 , $ ∈ A with
$n → 0 for n→ ∞ is called a pseudo-uniformizer of A. When the value group of
A is contained in R, this is equivalent to 0 < v($) < ∞ for the valuation v of A.

This is a replacement for the concept of a uniformizer for cases when the maximal
ideal is not finitely generated (which is going to happen a lot in these lectures).

Exercise 1.1.6. Check that for any pseudo-uniformizer $, the fraction field of A is
A[1/$], which is thus a valued field.

It is clear that t is a pseudo-uniformizer of Fp[[t1/p∞]], hence Fp((t1/p∞)) is a
complete valued field. Its valuation can still be explicitly described as

v : Fp((t1/p∞)) → Z[ 1
p ] ∪ {∞},

∑
m∈Z[ 1

p ]
amtm 7→ min{m ∈ Z[ 1

p ] s.t. am , 0}.

In particular, this is a non-archimedean field with valuation subring Fp[[t1/p∞]].

Exercise 1.1.7. (1) Note that in the definition of v, we wrote min, not inf. Explain
why this is well-defined, i.e. why the minimum is always attained. In partic-
ular, verify that the value group is really still Z[ 1

p ], like for R∞: This means
that the value group did not get any larger when we took completions.

(2) Prove that a valuation ring whose value group contains Z[ 1
p ] is non-Noetherian.

By definition of K∞, it is identified with lim−−→F
Fp((t)). It follows that the Frobenius

morphism of K∞ is an isomorphism. Since completion of valued fields is functorial,
it follows that

F : Fp((t1/p∞)) → Fp((t1/p∞)), t 7→ tp

is still an isomorphism. Here we use that the completion of the Frobenius on K∞
is precisely the Frobenius on Fp((t1/p∞)), as the two coincide on the dense subfield
K∞. (If you have done Exercise 1.1.4.2, you can now also verify directly that F is an
isomorphism.) We have thus constructed the first example of a perfectoid field!

Definition 1.1.8. A non-archimedean field L of characteristic p is called perfectoid
if it is perfect, i.e. if its Frobenius morphism F : L→ L is an isomorphism. Since any
field homomorphism is injective, this is equivalent to asking that F is surjective.

This definition is preliminary, as we will later give a more general definition that
extends to characteristic 0. We recall that a non-archimedean field is by definition
a complete valued field whose valuation is non-trivial. In particular, fields like Fp
are excluded: This field is perfect, but not perfectoid. Hence, in characteristic p, per-
fectoid is stronger than perfect: Additionally to the property that F is bijective, a
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perfectoid field always carries a non-trivial topology: They are objects of topological
algebra, not just of abstract algebra. Why the name “perfectoid” makes sense will
become clear when we consider characteristic 0.

1.1.1.5 Perfection of non-archimedean fields. Before we head to characteristic 0,
let’s take a step back. Question: How important was it really that the non-archimedean
field we started with was Fp((t))? Answer: Not at all! In fact, this kind of procedure
works for any non-archimedean field:

Definition 1.1.9. Let K be any non-archimedean field of characteristic p. Then the
completed perfection of K is defined as

Kperf := (lim−−→F
K)∧.

Here, as usual, F denotes the Frobenius endomorphism, and the completion refers
to the metric completion of lim−−→F

K for the metric topology induced by the valuation,
suitably rescaled, exactly as for Fp((t)). Explicitly, and more algebraically, for any
pseudo-uniformizer $ ∈ OK , we can define

Kperf :=
(

lim←−−d(lim−−→F
OK )/$d

)
[ 1
$ ].

Exercise 1.1.10. (1) Show that Kperf is always a perfectoid field.
(2) Prove that −perf defines a left adjoint to the forgetful functor

{perfectoid fields over Fp} → {non-archimedean fields over Fp}.

(3) Show that the residue field of Kperf is the perfection of the residue field of K .

Generalising the construction of the perfectoid Laurent series ring Fp((t1/p∞)),
iterating the Frobenius morphism thus defines an “infinitely ramified” tower over any
non-archimedean field of characteristic p, and a perfectoid field sitting on top of it.

Of course the constructions in this section so far were specific to characteristic
p since they crucially relied on the Frobenius morphism. Nevertheless, we will now
discuss that there are similar “infinitely ramified” towers in characteristic 0.

1.1.1.6 A tower of infinite ramification in characteristic 0. Consider the field K :=
Qp of p-adic numbers. This is a discretely valued field for the p-adic valuation v = vp.
For any n ∈ N, we consider the local field

Kn := Qp(p1/pn )|Qp .
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This is a finite extension of Qp of degree pn, and again it is totally ramified in the
sense of local fields. Namely, the unique extension of vp to Kn is given by

Qp Qp(p1/pn ) p1/pn

Z ∪ {∞} 1
pn Z ∪ {∞} 1

pn

vp vp

The ring of integers of Qp(p1/pn ) is Zp[p1/pn ], the maximal ideal is (p1/pn ).
As in characteristic p, let’s now take the colimit over n:

Definition 1.1.11. Consider Zp[p1/p∞] := lim−−→n∈N
Zp[p1/pn ] and let Zp 〈p1/p∞〉 be

its p-adic completion. This is a complete valuation ring, but no longer discrete or
Noetherian (by Exercise 1.1.7). Note that p is a pseudo-uniformizer of this valuation
ring. We let

Qp 〈p1/p∞〉 := Zp 〈p1/p∞〉[ 1
p ].

Since Zp 〈p1/p∞〉 is a complete valuation ring,Qp 〈p1/p∞〉 is a complete non-archimedean
field with valuation of the form

v : Qp 〈p1/p∞〉 → Z[ 1
p ] ∪ {∞}., p1/pn 7→ 1/pn

This will be our first example of a perfectoid field in characteristic 0.

Exercise 1.1.12. Prove that the residue field of the valuation ring Zp 〈p1/p∞〉 is Fp.

Even though there is no Frobenius morphism in this setting, the situation is quite
similar to the one from §1.1.1.3 in characteristic p: We adjoined higher and higher p-
power roots of the uniformizer and then took the completed colimit to get an infinitely
ramified field extension. But this is so far just a vague analogy, there is at a first glance
no immediate reason to expect that there is any more direct algebraic relation between
Qp 〈p1/p∞〉 and Fp((t1/p∞)).

But a miracle happens: The relation between Qp 〈p1/p∞〉 and Fp((t1/p∞)) turns out
to be much, much deeper than one can see from the surface! This is evidenced by the
following result, which is more than 30 years older than the perfectoid theory:
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Theorem 1.1.13 (Fontaine–Wintenberger, [FW79a]). There is a natural2 isomorph-
ism between the absolute Galois groups

Gal(Qp 〈p1/p∞〉|Qp 〈p1/p∞〉) = Gal(Fp((t1/p∞))|Fp((t1/p∞))).

Fontaine–Wintenberger’s Theorem might be quite surprising when you first see
it, as we usually think of arithmetics in general and Galois theory in particular as
being quite different in characteristics 0 and p. So how does this equivalence work in
practice? More precisely, since for any perfect field K , the Galois group of K governs
the finite field extensions of K , we would like to understand how the finite Galois
extensions of both fields are matched up.

The unramified extensions of any non-archimedean field correspond to the exten-
sions of the residue field, which is Fp for both Qp 〈p1/p∞〉 and Fp((t1/p∞)), so these
can be matched up in a natural way. Let us therefore focus on the ramified ones.

To give a first vague heuristic, the rough idea should be that we can “replace p by
t in equations”. For example, the extension of Qp 〈p1/p∞〉 defined by the polynomial
Xn − X − p might be sent to the finite field extension defined by the polynomial Xn −
X − t. And the one defined by the minimal polynomial X2 − 5pX − p1/p2 might be
sent to the one defined by the minimal X2 − 5tX − t1/p2 , and so forth. But this is only
a heuristic, there’s no elementary way to see that this actually works! To understand
why the heuristic does work out, it is helpful to take a further step back and generalise.

1.1.1.7 The cyclotomic tower. Are there any other fields besides Qp 〈p1/p∞〉 for
which we have analogues of the Theorem of Fontaine–Wintenberger, identifying the
Galois group of K with that of a perfectoid field in characteristic p? First-of-all, the
choice of p as a uniformizer was arguably pretty arbitrary, and the same kind of con-
struction works if we take p + p2 instead, or log(1 + p), or in fact any other non-zero
element of the maximal ideal of Zp. But in fact, there are other examples of totally
ramified towers that do not arise from extracting p-power roots of an element in the
maximal ideal. We now give a very interesting and useful example of this:

For simplicity, let’s assume3 that p , 2. Consider the cyclotomic extension

Qp(ζpn )|Qp .

2Without further explanation, the word “natural” is nonsensical in this context: Indeed,
the absolute Galois group is only well-defined up to non-canonical isomorphism unless we fix
algebraic closures of both fields, which are a priori unrelated. However, it can be filled with
mathematical content by saying that 1) there is a canonical and functorial way of identifying
algebraic closures of the two fields and 2) this identification matches up the resulting Galois
groups in a canonical way. We will see that this is indeed the case! More precisely, there is a
canonical equivalence between the respective Galois categories of either field.

3This isn’t actually seriously necessary, we only make this assumption to simplify the expos-
ition, so we don’t need to worry about some very minor complications



Perfectoid Spaces 9

This is a totally ramified finite field extension of degree ϕ(pn) = pn−1(p− 1). In fact, it
is Galois with group (Z/pnZ)×, namely the Galois action of any element a ∈ (Z/pnZ)×
is given by

a ∗ ζpn = ζapn .

The ring of integers ofQp(ζpn ) is Zp[ζpn ], the residue field is again Fp. The valuation
is this time a bit harder to describe explicitly: It turns out that Zp[ζpn ] is a complete
discrete valuation ring with uniformizer given by 1 − ζpn . One easily verifies that the
Galois action is continuous with respect to the valuation topology.

Playing the same game as before, we can now first form the colimit

Qp(ζp∞) := lim−−→n∈N
Qp(ζpn )

and then complete with respect to the p-adic topology to get the field

Q
cyc
p := Qp(ζp∞)∧ = (lim←−−d∈N lim−−→n∈N

Zp[ζpn ]/pd)[ 1
p ].

This inherits a valuation
v : Qcyc

p → Z[ 1
p ] ∪ {∞}

making it a non-archimedean field. Exactly like Qp 〈p1/p∞〉, the field Qcyc
p is an infin-

itely ramified non-archimedean extension of Qp. But in contrast to Qp 〈p1/p∞〉|Qp, it
is even “infinite Galois” in the following sense: There is a natural Galois action on
Qp(ζp∞) with group Z×p = lim←−−n∈N(Z/p

nZ)×. By continuity, this extends to a continu-
ous action of Z×p on Qcyc

p . In fact, there is a precise sense in which the morphism

Spa(Qcyc
p ) → Spa(Qp)

is a Galois covering: It is a torsor under the profinite group Z×p in a certain topology
– we will make this precise later. This is a difference to the example of Qp 〈p1/p∞〉.

Irrespective of this difference, the Fontaine–Wintenberger mystery repeats itself:

Theorem 1.1.14. There is a “natural”4 isomorphism of the absolute Galois groups

Gal(Qcyc
p |Qcyc

p ) = Gal(Fp((t1/p∞))|Fp((t1/p∞))).

In this case, it is already more difficult to try to write down a concrete cor-
respondence of field extensions, since it is not immediately obvious that there is a
pseudo-uniformizer x ∈ Qcyc

p that admits arbitrary p-th power roots, which can play
the role of t in Fp((t1/p∞)). However, such an element turns out to exist:

4See footnote 1 for an explanation of what this means.
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Exercise 1.1.15. (1) Prove that x := limn→∞(1 − ζpn )pn−1(p−1) is a well-defined
element of Qcyc

p , i.e. the sequence (1 − ζpn )pn−1(p−1))n∈N converges.
(2) Show that x is a pseudo-uniformizer of Qcyc

p that has arbitrary p-power roots.

Remark 1.1.16. For the element x in Exercise 1.1.15 to exist, it is crucial that we
complete p-adically after adjoining all ζpn : The limit does not exist in Qp(ζp∞).

In this sense, Qcyc
p does look a bit similar to a perfectoid field in characteristic p.

At this point, we have now seen enough examples to understand the definition of:

1.1.2 Perfectoid fields

We are ready for the first key definition of this course!

Definition 1.1.17 ([Sch12]). A perfectoid field is a non-archimedean field K of
residue field characteristic p> 0 with non-discrete value group such that the Frobenius

F : OK/p→ OK/p, x 7→ xp

is surjective.

All three examples we discussed so far, Fp((t1/p∞)), Qp 〈p1/p∞〉 and Qcyc
p are per-

fectoid fields. For K :=Qp 〈p1/p∞〉, this follows from the following important exercise:

Exercise 1.1.18. (1) Verify that there is an isomorphism

OK/p = Zp[p1/p∞]/p ∼←− Fp[t1/p∞]/t, p1/pn ← [ t1/pn

.

(2) Convince yourself that this shows that Qp 〈p1/p∞〉 is a perfectoid field.

Note that this makes slightly more precise the algebraic heuristic mentioned earlier
that we “replace p1/pn by t1/pn in equations”.

Exercise 1.1.19. (1) Find an analogous isomorphism Zcyc
p /p

∼←− Fp[t1/p∞]/t and
use this to show that Qcyc

p is a perfectoid field. Hint: Use Exercise 1.1.15.
(2) Another important example of a perfectoid field: For any non-archimedean

field K of residue characteristic p, the completion K̂ of any algebraic clos-
ure K is complete and still algebraically closed (Krasner’s Lemma). Prove
that K̂ is perfectoid. In particular, this applies to Cp, which is defined as the
completion of an algebraic closure of Qp.

(3) A non-example: The field Qp is not perfectoid. This is the kind of thing ruled
out by the assumption that the value group is non-discrete. Prove that in fact,
for any perfectoid field, the value group is p-divisible.
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Remark 1.1.20. Note that in contrast to the definition of a perfect ring, the Frobenius
homomorphism in Definition 1.1.17 is just assumed to be surjective, not bijective. In
fact, for a perfectoid field K , the map F : OK/p→ OK/p is bijective if and only if
K has characteristic p. The problem is that the kernel is too big: For example, for
K = Qp 〈p1/p∞〉, the element p1/p is non-zero but in the kernel of F.

That being said, we can always make F into an isomorphism by quotienting out
by a larger ideal on the left hand side. For example,

Zp 〈p1/p∞〉/p1/p → Zp 〈p1/p∞〉/p, x 7→ xp

is an isomorphism. See Exercise 1.1.33 below for more on this topic.

Remark 1.1.21. In scientific language, the suffix -oid (from Greek “eîdos”, meaning
“form”) indicates that something “is not quite the same as but a bit similar to” or “has
likeness to” whatever is described by the word before it. So a “humanoid” resembles
a human, an “affinoid” resembles an affine scheme, and the definition of a perfectoid
field resembles that of a perfect field. Saying “-oid” is basically the intellectual way
of saying “-ish”. Maybe don’t call them “perfect-ish spaces”, though.

1.1.2.1 Inverse perfection, [ and ]. In Section 1.1.1.5, we have considered the per-
fection functor A 7→ lim−−→F

A defined on the category of Fp-algebras. We now turn the
arrow around and consider the “inverse perfection”:

Exercise 1.1.22. (1) Let A be any Fp-algebra. Show that the limit lim←−−F A of the
diagram

A
[p]
←−− A

[p]
←−− ...

is a perfect Fp-algebra. This is called the “inverse perfection”.
(2) Show that the perfection A 7→ lim−−→F

A is a left adjoint for the forgetful functor

{perfect Fp-algebra} → {Fp-algebra}

while the inverse perfection A 7→ lim←−−F A is a right adjoint of the forgetful
functor. Deduce the respective universal properties of lim−−→F

A and lim←−−F A.

The key observation is now that we can in fact recover Fp[[t1/p∞]] from

Fp[[t1/p∞]]/t � Zcyc
p /p

by forming its inverse perfection: Namely, observe that the inverse perfection of
Fp[[t1/p∞]]/t is Fp[[t1/p∞]], via the map

lim←−−F Fp[[t
1/p∞]]/t

(Fn)n∈N−−−−−−→ lim←−−n∈N Fp[[t
1/p∞]]/tpn

= Fp[[t1/p∞]].
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All in all, we have thus found a concrete way to construct Fp((t1/p∞)) out of Qcyc
p .

Namely, we can (so far rather vaguely) sketch this “evolution” in the following steps:

Q
cyc
p  Z

cyc
p  Z

cyc
p /p Fp[[t1/p∞]]/t  Fp[[t1/p∞]] Fp((t1/p∞)),

where the first step is forming the ring of integral elements, the third step is in fact an
isomorphism, and the fourth arrow is the inverse perfection.

As we shall see next, this works very generally, yielding a functorial construction!

Proposition 1.1.23. Let K be any perfectoid field. Consider

OK[ := lim←−−F OK/p

endowed with the inverse limit topology, where OK/p carries the discrete topology.
Then as a topological ring, OK[ is a complete valuation ring of characteristic p. The
fraction field

K[ := Frac(OK[ )

is a perfectoid field of characteristic p.

To prove the Proposition, we first show the following lemma:

Lemma 1.1.24. The natural map of sets

lim←−−
x 7→xp

OK → lim←−−
x 7→xp

OK/p = OK[

is bijective and multiplicative. It’s inverse is given for any (xn)n∈N with xn ∈ OK/p by
choosing any lifts x̃n of xn to OK and sending these to

( lim
m∈N

x̃pm

n+m)n∈N.

Proof. We have x̃p
n+1 = x̃n + pa for some a ∈ OK , and hence x̃pn+1

n+1 = (x̃n + pa)pn ≡
x̃pn mod pn. It follows that (x̃pn

n )n∈N is a Cauchy sequence.

Exercise 1.1.25. (1) Verify the remaining statements of the Lemma.
(2) Show that for any $ ∈ OK with p ∈ $OK , the following map is also an iso-

morphism:
lim←−−
F

OK/p→ lim←−−
F

OK/$.

Proof of Proposition 1.1.23. : It is clear that F : OK[ → OK[ is bijective, so OK[ is a
perfect ring of characteristic p. We endow it with the inverse limit topology.

Let $ ∈ OK such that 0 < v($) < 1, this exists by the assumption that the value
group is not discrete. Since F : OK/p→ OK/p is surjective, for every n ∈ N we can
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find $n ∈ OK such that $p
n ≡ $n−1 mod p for all n. Thus $[ := ($n)n∈N defines an

element of OK[ .
One verifies directly that OK[/$[ = OK/$. Since OK[ is perfect, it follows that

OK[ = lim←−−
F

OK[/$[ = lim←−−
n

OK[/$[pn

,

hence OK[ is $-adically complete.
Finally, it follows from the multiplicative bijection OK[ = lim←−−x 7→xp

OK that OK[

is integral and the map
OK[ [ 1

$[ ] = lim←−−
x 7→xp

K

is also a multiplicative bijection. Since on the right hand side, every non-zero element
has an inverse, this shows that K[ = OK[ [ 1

$[ ] is a field. Finally, for any 0 , y ∈ K[,
we have y ∈ lim←−−x 7→xp

OK or y−1 ∈ lim←−−x 7→xp
OK . Hence OK[ is a complete valuation

ring with pseudo-uniformizer $[.

It is clear from the definition that −[ is functorial. We have thus defined:

Definition 1.1.26. The “tilting functor” is the functor

{perfectoid fields in characteristic 0} → {perfectoid fields in characteristic p}
K 7→ K[ := Frac(OK[ )

Exercise 1.1.27. (1) If K is a perfectoid field of characteristic p, show K[ = K .
(2) Use Exercise 1.1.18 to prove that Qp 〈p1/p∞〉[ = Fp((t1/p∞)).
(3) Use Exercise 1.1.19 to prove that (Qcyc

p )[ = Fp((t1/p∞)). In particular, it fol-
lows from this and part (2) of this Exercise that [ is not fully faithful! (Indeed,
as a bonus exercise, prove that Qp 〈p1/p∞〉 is not isomorphic to Qcyc

p .)

Example 1.1.28. We will later see in Theorem 1.1.39 that the tilt of any algeb-
raically closed perfectoid field is still algebraically closed. For example, C[p is the
completion of an algebraic closure of Fp((t1/p∞)). This will clarify the naturality in
Theorem 1.1.13 (see Corollary 1.1.40 for details on this).

In order to give another important example of perfectoid fields, let us already
mention the following result, which we will discuss in greater generality in section 1.2
(see Corollary 1.2.43)

Theorem 1.1.29. Let K be a perfectoid field and let L |K be any finite field extension.
Then L is again a perfectoid field.

Having seen some examples, we now go on to study basic properties of perfectoid
fields. The proof of Proposition 1.1.23 has also shown:
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Corollary 1.1.30. Let K be any perfectoid field. Then there is an isomorphism of
topological groups

K[× = lim←−−
x 7→xp

K×.

The projection

] : K[× = lim←−−
x 7→xp

K× → K×, x = (xn)n∈N 7→ x] := x1

is continuous with respect to the valuation topologies.

Corollary 1.1.31. Let $[ ∈ OK[ be any pseudo-uniformizer of K[. Then $ := $[]

is a pseudo-uniformizer of K that admits arbitrary p-power roots in K .

Proof. The element $[ admits a pn-power root $[1/pn since K[ is perfectoid. Since
−] is a group homomorphism, the same is true for $. Since $[n → 0, it follows by
continuity that $n → 0, so $ is a pseudo-uniformizer of K .

The existence of such a pseudo-uniformizer with arbitrary p-power roots is one
of the many ways in which K behaves “similarly to a perfect field”. We can now
generalise the isomorphism Zp[p1/p∞]/p = Fp[t1/p∞]/t from Exercise 1.1.18:

Exercise 1.1.32. Let $[ and $ be as in Corollary 1.1.31 and assume that $ |p, i.e.
p ∈ $OK . Then ] induces an isomorphism of Fp-algebras

OK[/$[ = OK/$, x 7→ x]

We note that one can always arrange that p ∈ $OK by replacing $ with $1/pn

for n large enough. In fact, in this way, we may even assume that $p |p. Let us fix
such a pair of pseudo-uniformizers $[ and $ = $[] with $p |p in the following.

Exercise 1.1.33. A non-archimedean field K is a perfectoid field if and only if there is
$ ∈ K with $p |p such that the map OK/$

∼−→ OK/$p, x 7→ xp is an isomorphism.

Remark 1.1.34. The name “tilt” comes from the following picture: Let $, $[ be
pseudo-uniformizers as above. We picture Spec(OK/$) as being a “nilpotent thick-
ening” of the closed point inside of Spec(OK ), because it is sent to the closed point
via the natural map and OK/$ contains many nilpotent elements. The same applies
to Spec(OK[/$[) → Spec(OK[ ). But since OK[/$[ = OK/$, we can imagine these
thick points to be identified, as in the following picture (inspired by [SW20, p52]):

Spec(OK )

Spec(OK[ )
Spec(OK/$)
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With this visualisation in mind, the idea is now that −[ “tilts” a field from char-
acteristic 0 into characteristic p. In line with this picture, the symbols are inspired by
musical notation: The symbol [ (pronounced flat) lowers a note by a half-tone. The
symbol ] (pronounced sharp) raises a note by a half-tone. So [ “lowers K to charac-
teristic p” and ] “raises an element to characteristic 0” (maybe this will make a bit
more sense when we apply ] to algebras later on).

1.1.2.2 Historical remarks. Infinitely ramified fields like Fp((t1/p∞)) and Qcyc
p and

Qp 〈p1/p∞〉 have been studied in number theory and arithmetic geometry for a long
time, certainly > 50 years. But the definition of perfectoid fields due to Scholze gives
a great framework to explain the behaviour of these fields that had been observed in
the literature up to this point, and lends itself to generalisations that ultimately lead to
the much more general concept of a perfectoid space. Let us give some examples for
appearances of perfectoid fields in the literature that predate this definition:
• The field Qcyc

p makes an important appearance in one of the first works in the
field: Tate’s seminal article [Tat67]. This already contains some key observations
e.g. about its Galois cohomology that we might today describe as being typically
“perfectoid”. We will discuss this link in some more detail in Section 1.4.4.2.

• More generally, perfectoid fields like Qcyc
p are important in p-adic Hodge theory,

which is concerned with comparisons of cohomology theories for proper smooth
p-adic varieties over Cp, in the style of Hodge theory over C. Examples include
Sen theory and various works of Faltings. We will discuss this in more detail in
the last lecture, when we discuss the Hodge–Tate spectral sequence.

• The field Qcyc
p also plays an important role in Iwasawa-theory.

• As mentioned before, the theory of perfectoid fields has its roots in the work
of Fontaine–Wintenberger [FW79a][FW79b]. Going far beyond the isomorph-
ism Theorem 1.1.13 mentioned above, they more generally define a notion of
“arithmetically profinite fields” (APF), which are certain infinitely ramified Galois
extensions of local fields, for example Qp(ζp∞)|Qp. To every such APF field L,
they associate a valued field of characteristic p called the “field of norms”. They
show that this identifies the Galois groups of L and its field of norms, respectively.
One can show that the completion L̂ of any APF field L is a perfectoid field,
and the completion of the field of norms is the tilt L̂[. Fontaine–Wintenberger
discuss completions of APF fields in detail, including the multiplicative structure
of L[ (Corollary 1.1.30). In this context, they consider another construction that
is crucial to the perfectoid theory:

1.1.2.3 Fontaine’s θ-map. To any perfect ring R in characteristic p, we can func-
torially associate the ring of Witt vectors W(R) (for an introduction to Witt vectors,
see e.g. [Rab14]). We recall some basic properties of W(R): It is a p-adically com-
plete p-torsionfree Zp-algebra. For example, we have W(Fp) = Zp. There is a natural
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isomorphism W(R)/p = R as well as a canonical multiplicative section

[−] : R→ W(R)

(which is not additive: R is of characteristic p while W(R) is p-torsionfree). With
respect to this lift, any element in x ∈W(R) admits a series representation of the form

x =
∞∑
n=0
[an]pn

for some uniquely determined an ∈ R. We can use this to canonically identify

W(R) �
∞∏
n=0

R

as sets. But writing down the addition and multiplication operations of W(R) in terms
of the right hand side is a bit involved and requires the so-called “ghost components”.
In fact, this concrete description is how W(R) is usually defined.

We are going to apply this construction to perfectoid fields, as follows: Let K be
any perfectoid field, then the tilt K[ is perfectoid, hence perfect. Since OK[ ⊆ K[ is a
valuation ring, therefore integrally closed, it follows that OK[ is a perfect Fp-algebra.
We can thus consider

W(OK[ ).

This ring may first seem a bit scary, being large and non-Noetherian. But it’s actually
not that bad – one gets used to it! Its most important feature is that it allows us to “lift

] : OK[ → OK/p

to a ring homomorphism in characteristic 0”: Namely, apart from the reduction map
W(OK[ ) → OK[ and the canonical lift [−] : OK[ → W(OK[ ), we have the following
very important homomorphism relating W(OK[ ) to OK :

Proposition 1.1.35. For any perfectoid field K , the map

θ : W(OK[ ) → OK,
∞∑
n=0
[an]pn 7→

∞∑
n=0

a]npn,

is a homomorphism of Zp-algebras, called Fontaine’s θ-map. It is is surjective and
the kernel of θ is a principal ideal.

We do not discuss the proof of Proposition 1.1.35 here (you can find a proof in
[Bha17, Proposition 6.1.8] or [SW20, Lemma 6.2.8]). We just note that the existence
of θ does not follow immediately from the usual mapping property of W(−) into p-
strict rings (e.g. [Rab14, Theorem 6.6]) since OK/p is not perfect (the Frobenius is
only surjective, not necessarily bijective). One really has to do some non-trivial work
to see that θ is a ring homomorphism.
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Remark 1.1.36. While θ is most interesting when Char(K) = 0, the statement is still
correct when Char(K) = p: Then ] is the identity, so θ is just the canonical projection
W(OK[ ) → OK[ to the first component. The kernel of θ is then generated by p.

Remark 1.1.37. Warning: One might be led to think that the same formula defines a
map W(K[) → K[, but this is not true! The problem is that the series on the right does
not necessary converge in this case: There is nothing that stops the an from diverging
faster in K[ than pn converges. A good analogy is the observation that OK [[t]] → OK ,
t 7→ p is well-defined, but trying to extend this to K[[t]] → K does not work.

1.1.2.4 Our first version of the Tilting Equivalence. We have already seen that the
tilting construction gives us a way to “go from characteristic 0 to characteristic p”.
Fontaine’s map now gives us a way to “go into the other direction”:

Definition 1.1.38. Let K be a perfectoid field and let$ ∈ OK be a pseudo-uniformizer.
Let L be any perfectoid field extension of K[. The structure map OK[ → OL induces
by functoriality of W(−) a ring homomorphism W(OK[ ) → W(OL). On the other
hand, we can regard OK as a W(OK[ )-algebra via θ : W(OK[ ) → OK . We can there-
fore form the tensor product

O]L := W(OL) ⊗W (O
K[ ),θ OK .

The untilt of L over K is
L] := O]L[

1
$ ].

We can use this to state the main theorem of the first lecture:

Theorem 1.1.39. Let K be a perfectoid field. Then −[ defines an equivalence

{perfectoid field extensions of K} ∼−→ {perfectoid field extensions of K[}.

The inverse functor is given by sending a perfectoid extension L of K[ to L]. Moreover,
the equivalence identifies the finite field extensions on both sides.

For the last sentence, we recall from Theorem 1.1.29 that any finite field extension
is automatically perfectoid, so tilting it makes sense.

For the proof of the first part of Theorem 1.1.39, one checks directly that the two
functors −[ and −] are quasi-inverses to each other. We defer the proof to later as we
will repeat the argument in more detail in Theorem 1.2.25 below. The proof that −[
and −] identify finite extensions is more difficult. We will discuss this in section 1.2
where we also sketch a proof of Theorem 1.1.29. Once we have both of these results,
note that as a Corollary, we obtain Theorem 1.1.13. Namely, we more generally have:

Corollary 1.1.40. Let K be a perfectoid field. Then any algebraic closure K induces
an algebraic closure K

[
of K , and a natural isomorphism Gal(K |K) = Gal(K[ |K[).
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Proof. Let K |K be the algebraic closure and let C be the completion of K . Recall
from Exercise 1.1.19.(2) that C is perfectoid. It follows by applying Theorem 1.1.39
to C that C[ is algebraically closed. By functoriality, we obtain a map K[→C[, hence
we can define K

[ to be the algebraic closure of K[ inside C[.
The proof is now essentially that −[ and −] identify the fibre functors of the

respective Galois categories of K and K[. Let us make this more explicit in down-to-
earth terms: As any automorphism σ of K in Gal(K |L) is automatically continuous,
it extends uniquely to an automorphism σ̂ : C → C. Again by functoriality, this tilts
to an automorphism

σ̂[ : C[ → C[

ofC[ that fixes K[. Restricting to K
[, we obtain the desired elementσ[ of Gal(K[ |K[).

Slightly rephrasing this construction, we can write any automorphism of K as
an inverse system of automorphisms of its finite Galois subextensions. By applying
the tilting equivalence, we obtain a compatible system of automorphisms of finite
extensions of K[ inside C[. This defines a map

−[ : Gal(K |K) → Gal(K[ |K).

From this construction, it is immediate that −] defines an inverse mapping.

Remark 1.1.41. Note that in the above discussion starting from Definition 1.1.38, we
do not require K to be of characteristic 0. But if K has characteristic p, then the effect
of tilting is trivial (see Exercise 1.1.27.(1)), and the same is true for untilting:

Exercise 1.1.42. Assume K has characteristic p. Verify that for any perfectoid field
extension L |K , we have L] = L.

This verifies Theorem 1.1.39 in the easier case that K has characteristic p. Of
course, the case that K has characteristic 0 is much more interesting. A related remark:

Remark 1.1.43. Warning: It is not true that ] defines a functor from all perfectoid
fields of characteristic p to perfectoid fields of characteristic 0. In fact, these categor-
ies are not equivalent via [, as we have Qcyc[

p = Fp((t1/p∞)) = Qp 〈p1/p∞〉[. The point
is that the ]-functor only works after fixing some base field K ′ and fixing K such that
K ′ = K[. More precisely, we need the datum of the map θ as an input to define ].

In short, tilting is defined for any perfectoid field, but untilting requires a base
field which the untilt will live over (typically, this base field has characteristic 0). It is
important to keep this difference in mind.
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1.2 Lecture 2: Perfectoid K -algebras

1.2.1 Definition of perfectoid algebras

In §1.1, we discussed perfectoid fields (Definition 1.1.17) and the “tilting” functor

{perfectoid fields over Qp} → {perfectoid fields over Fp}, K 7→ K[

(Definition 1.1.26). For a fixed perfectoid field K , we also saw the “untilting” functor

{perfectoid fields over K[} ∼−→ {perfectoid fields over K}, L 7→ L]

(Definition 1.1.38). Our first goal in this second lecture is to extend these construc-
tions from non-archimedean fields to a much larger class of topological rings.

How can we generalize the definition of perfectoid fields from fields to rings? We
should replace non-archimedean fields by a category of topological rings. For this,
we will use uniform complete Huber rings over K in the sense of [Ber, Definition
1.1.1.1] (we recall that a Huber ring R is uniform if R◦ is bounded, see [Hüb, §1.3] or
[SW20, Definition 2.2.9]). The reasons are as follows:

(1) For perfectoid fields K , the ring of integers OK played an important role in
all constructions. Working with complete Huber rings R allows us to replace
OK by the ring of power-bounded elements R◦ of the K-Banach algebra R.

(2) The uniformity condition guarantees that R◦ is an adic ring, like OK .
(3) In the definition of perfectoid fields, we required the value group to be non-

discrete. There are several ways to give analogues of this for Huber rings. The
one that we shall use in these lectures is that R contains a perfectoid field K .

With this in mind, we get a straightforward generalization of Definition 1.1.17:

Definition 1.2.1. Fix a perfectoid field K . Then a perfectoid K-algebra is a uniform
complete Huber ring R over K for which the following map is surjective:

F : R◦/p→ R◦/p, x 7→ xp .

Recall from Corollary 1.1.31 that one can always find a pseudo-uniformizer$ ∈ K
that admits arbitrary p-th roots and such that$ |p. Let us fix such a$. Then we have:

Exercise 1.2.2 ([Sch18, Remark 3.2]). Let R be a complete Huber ring over K , then
due to the assumption that $ |p, the following map is a ring homomorphism:

Φ : R◦/$1/p → R◦/$, x 7→ xp .

Note that it is a homomorphism of OK/$-algebras only after redefining the OK -
algebra structure on the target to be given via the Frobenius F : OK/$ → OK/$.

Show that R is perfectoid if and only if R is uniform and Φ is bijective.
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Remark 1.2.3. If you look closely at the original definition of perfectoid algebras in
[Sch12], it might seem like there is a small difference to Definition 1.2.1: In [Sch12],
the words “complete Huber ring over K” are replaced by “Banach K-algebra”. But in
fact there is no difference as these two notions are equivalent5, see [SW20, p.11] or
[Bha17, §5.2].

1.2.1.1 Examples of perfectoid algebras.

Example 1.2.4. As a first example, any perfectoid field extension L of K is a perfect-
oid K-algebra. Indeed, note that L is uniform because L◦ = OL is bounded.

Remark 1.2.5. Conversely, any perfectoid K-algebra which is a field is a perfectoid
field [Ked18]. But this is hard to prove! The issue is that the norm of non-archimedean
fields is required to be multiplicative, but the norm of K-Banach algebras is not.

Exercise 1.2.6. Prove that in characteristic p, a K-Banach algebra R is perfectoid if
and only if it is perfect. The main work lies in proving that R is uniform.

Example 1.2.7. Consider the Tate algebra K 〈X〉. This is not perfectoid: The Frobenius
F : OK 〈X〉/p → OK 〈X〉/p does not contain X in its image. But similarly to the
ramified towers of fields from Lecture 1, there is a way to make K 〈X〉 perfectoid
by considering lifts of Frobenius: Indeed, consider the direct system of K-algebras

K 〈X〉 → K 〈X1/p〉 → · · · → K 〈X1/pn 〉 → . . . .

In terms of the associated adic spaces, this corresponds to an inverse system of discs

· · · → B x 7→xp

−−−−−→ B x 7→xp

−−−−−→ B.

We now take the completed colimit of the direct system of algebras, like we did for
non-archimedean fields: Set

OK 〈X1/p∞〉 := (lim−−→n∈N
OK 〈X1/pn 〉)∧, K 〈X1/p∞〉 := OK 〈X1/p∞〉[ 1

$ ]

where $ is any pseudo-uniformizer of K (if Char(K) = 0, we can take $ = p).

Proposition 1.2.8. K 〈X1/p∞〉 is a perfectoid K-algebra.

Proof. It is clear from the definition that R := K 〈X1/p∞〉 is a complete Huber ring
with ring of definition R0 := OK 〈X1/p∞〉. What is less obvious is that R is uniform.

We will see in Proposition 1.2.14 below a quick way to see this, but for now, to
get a feeling for this statement, it is maybe more instructive to prove this by hand:

5And maybe the reason that K-Banach spaces are used in [Sch12] is that historically, this
is the more classical notion. People weren’t at all used to working with Huber pairs when this
article was written.
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We claim that in fact, we have R◦ = R0. This will show that R is uniform, and
moreover that the map F : R◦/p→ R◦/p is given by

OK/p[X1/p∞] → OK/p[X1/p∞], ∑
anX1/n 7→ ∑

ap
n Xp/n. (1.2)

Since K is perfectoid, F : OK/p→ OK/p is surjective, thus (1.2) is surjective.
It remains to prove that R◦ = R0. Let us give an explicit way to see this, by arguing

like in the proof that K 〈X〉◦ = OK 〈X〉: It suffices to prove that the norm function

‖ − ‖ : K 〈X1/p∞〉 → R≥0,
∑

n anXn 7→ maxn(|an |)

is in fact multiplicative: Indeed, let f , g ∈ R, then we clearly have ‖ f · g‖ ≤ ‖ f ‖ · ‖g‖.
To see that we have equality, we may rescale both ‖ f ‖ and ‖g‖ by elements in K to
assume that ‖ f ‖ = 1 = ‖g‖. It is clear from the definition of ‖ − ‖ that this means that
f , g ∈ OK 〈X1/p∞〉. Let k be the residue field of K and consider the reduction map

OK 〈X1/p∞〉 → k[X1/p∞].

Let f and g be the images of f and g, then ‖ f ‖ = 1 = ‖g‖ means that f , 0 and g , 0.
Assume towards a contradiction that ‖ f g‖ < 1, then all coefficients of f g lie in mK ,
hence f g = 0. But k[X1/p∞] is an integral domain, so this is a contradiction.

Remark 1.2.9. In fact, if (Ai)i∈I is any filtered direct system of uniform Tate rings,
the completion of its colimit (A, A+) = (lim−−→i∈I

(Ai, A◦i ))∧ (in the sense of [Ber, §1.3.4])
is again uniform. Moreover, we have A◦ = A+ = (lim−−→i∈I

A◦i )∧ if all the transition maps
A◦i /$ → A◦j/$ are injective for j ≥ i in I, see [Heu19, Lemma A.2.2].

Example 1.2.10. As a slight variation, consider instead the algebra

K 〈X±1〉 = K 〈X,Y〉/(XY − 1)

of the rigid unit annulus T = Spa(K 〈X±1〉). Exactly as in the previous example, set

OK 〈X±1/p∞〉 := (lim−−→n∈N
OK 〈X±1/pn 〉)∧, K 〈X±1/p∞〉 := OK 〈X±1/p∞〉[ 1

$ ].

Exercise 1.2.11. Show that K 〈X±1/p∞〉 is a perfectoid K-algebra.

If char(K) = 0, then T x 7→xp

−−−−−→ T is finite étale, hence unramified. But the map
OK 〈X±1〉 → OK 〈X±1〉, X 7→ Xp reduces to the relative Frobenius mod p and is
thus totally ramified in the special fibre. This is exactly like in the §1.1.1.6, where
Qp(p1/pn )|Qp is étale but the extension Zp[p1/pn ]|Zp is ramified. Hence the perfect-
oid K-algebra K 〈X±1/p∞〉 arises from a tower of K-algebras that is “infinitely ramified
on the mod p fibre”, like in our examples of perfectoid fields in §1.1.1.6. We will fur-
ther explore in Lecture 3 how perfectoid spaces arise as infinitely ramified towers.

Another source of perfectoid algebras stems from perfection, generalising §1.1.1.5:
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Proposition 1.2.12. Assume Char(K) = p and let (R, R+) be a Huber pair over K .
Consider lim−−→F

R+. Then the $-adic completion R+,perf of lim−−→F
R+ is a perfect OK -

algebra. In particular, Rperf[ 1
$ ] := R+,perf[ 1

$ ] is a perfectoid K-algebra.

Exercise 1.2.13. Prove this. Hint: Exercise 1.2.6 helps.

1.2.1.2 Perfectoid OK -algebras. Let K be a perfectoid field. As before, we fix a
pseudo-uniformizer $ ∈ K that admits arbitrary p-th roots and such that $ |p.

As we have seen in the examples, when we want to check that a Huber ring R over
K is perfectoid, it can be difficult in practice to verify the condition that R is uniform.
Similarly, it is often difficult to compute the ring R◦/p explicitly in order to verify
that the Frobenius is surjective. This is one reason why the following is a very useful
criterion to see that algebras are perfectoid:

Proposition 1.2.14 ([Sch12, Lemma 5.6]). Let A be an OK -algebra that is$-adically
complete, $-torsionfree and such that

Φ : A/$1/p → A/$, x 7→ xp

is an isomorphism. Then A[ 1
$ ] is a perfectoid K-algebra.

Definition 1.2.15. We call such A perfectoid OK -algebras.

The following proof of Proposition 1.2.14 is due to Scholze. We modify it a bit to
make it slightly more elementary, by removing some “almost mathematics”.

Proof. Let R := A[ 1
$ ]. We claim that we have an explicit description of R◦ as follows:

A∗ := {x ∈ R | for all n ∈ N: $1/pn · x ∈ A} = R◦. (1.3)

We first observe that A∗ ⊆ R◦: Indeed, for any x ∈ A∗, we have $ · xpn ∈ A for all n,
hence x is power-bounded. For the other direction, we use:

Claim 1.2.16 ([Sch12, Lemma 5.7]). Let x ∈ R such that xp ∈ A∗. Then x ∈ A∗.

Proof. Fix n ∈ N and set ε := $
1
pn . We need to see that ε x ∈ A. Let k ≥ 1 be large

enough such that y0 := $
k
p x ∈ A. Then y

p
0 = $

k xp ∈ $A∗. Hence (ε y0)p ∈ $A for
any n ∈ N. Since Φ is injective, it follows that

ε$
k
p x = ε y0 ∈ $

1
p A.

Since A has no$-torsion, we can cancel a factor of$
1
p from this equation. It follows

that ε$
k−1
p x ∈ A. This shows that y1 := $

k−1
p x ∈ A∗. Continuing inductively, we see

that yk = x ∈ A∗, as we wanted to see.
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Let now x ∈ R◦. For any n ∈ N, we need to see that ε · x ∈ A where ε = $1/pn . To
this end, observe first that (ε · x)k → 0 for k→∞ as x is power-bounded and εk → 0.
Since A ⊆ A[ 1

$ ] is open, this shows that there is k ∈ N such that (ε · x)pk ∈ A. The
claim now shows that ε · x ∈ A, as desired. This completes the proof of (1.3).

From (1.3), we deduce that $ · R◦ ⊆ A. Hence R is uniform.
Finally, we use (1.3) to verify that R◦/$1/p → R◦/$, x 7→ xp is surjective. In

fact, by Exercise 1.2.2, we are free to change $, so it suffices to see that

Φ
′ : R◦/$1/p2 → R◦/$1/p, x 7→ xp

is surjective. To verify this, let x ∈ R◦. Then we have $1/px ∈ A, this is the case of
n = 1 of the condition in (1.3). Since Φ is surjective by assumption, there is y ∈ A
such that yp = $1/px +$ · r for some r ∈ A. Then z := $−1/p2

y ∈ R satisfies

zp = x +$1− 1
p r ∈ R◦.

Since R◦ is integrally closed, this implies that z ∈ R◦. Hence this equation shows that
the residue class of x is in the image of Φ′, as we wanted to see.

Remark 1.2.17. The arguments involving factors of $1/pn for any n give a first
glimpse at (and motivation for) “almost mathematics”, which wemeet again in §1.2.2.1.

Exercise 1.2.18. Revisit the examples in Section 1.2.1.1 and convince yourself that
Proposition 1.2.14 makes it much easier to verify that these are perfectoid.

Exercise 1.2.19. (1) For a perfectoid K-algebra R, any ring of integral elements
R+ ⊆ R is a perfectoid OK -algebra. Hint: Show that ω1/pR◦ ⊆ R+ and use that
you may change the uniformizer $.

(2) A concrete example: Let R1 := OK 〈X1/p∞〉 and R2 := OK +mKOK 〈X1/p∞〉.
Verify that these both define perfectoid OK -subalgebras of K 〈X1/p∞〉.

1.2.1.3 The Tilting equivalence. It is straightforward to adapt the basic “perfectoid”
constructions for perfectoid fields from Lecture 1 to this setup, as we now explain.

From now on, let us fix a perfectoid field K with tilt K[, let $[ be a pseudo-
uniformizer of K[ with $ |p and let $ = $[]. We start with the tilting functor:

Definition 1.2.20. For any perfectoid K-algebra R, its tilt is the K[-algebra R[ defined
as

R◦[ := lim←−−F R◦/p, R[ := R◦[[ 1
$[ ].

We will see in Exercise 1.2.23 below that R◦[ = R[◦, hence we will later use these
two interchangeably.

Exercise 1.2.21. (1) Show that R[ is a perfectoid K[-algebra. Hint: Exercise 1.2.6.
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(2) Show that lim←−−F R◦/p = lim←−−F R◦/$, so we could equivalently use R◦/$ to
define R[. Since we always allow the case that Char(K) = p, this shows in
particular that in characteristic p, we have R◦ = lim←−−F R◦/$.

(3) Show that there is a natural isomorphism R◦[/$[ = R◦/$.
(4) Show that for the perfectoid algebra from Proposition 1.2.8, there is a canon-

ical isomorphism K 〈X1/p∞〉[ = K[〈X ′1/p∞〉 where X ′ is defined as the ele-
ment (X, X1/p, X1/p2

, . . . ) ∈ lim←−−F OK 〈X
1/p∞〉/p.

Exactly as in the case of perfectoid fields, one shows:

Proposition 1.2.22. The natural map of sets

lim←−−
x 7→xp

R◦ → lim←−−
x 7→xp

R◦/p

is a bijection. In particular, there is a multiplicative bijection R[ = lim←−−x 7→xp
R.

We deduce that the projection to the first component of lim←−−x 7→xp
R is a multiplic-

ative map, the sharp map
] : R[ → R

which turns out to be continuous, like we saw for perfectoid fields.
Second, we again have Fontaine’s θ-map which is defined by

θ : W(R[◦) → R◦,
∞∑
n=0
[an]pn 7→

∞∑
n=0

a]npn.

Once again, it is a non-trivial result that this is a Zp-algebra homomorphism.
We can use the ]-map to see:

Exercise 1.2.23. Prove that for the ring of power-bounded elements R[◦ of R[, we
have

R[◦ = R◦[.

Hint: Convince yourself that the inclusion R◦[ ⊆ R[◦ is clear. For the other inclusion,
let f ∈ R[◦, then there is n such that $[n f m ∈ R◦[ for every m ∈ N. Now apply ]. If
you are stuck, consult [Bha17, Theorem 6.2.7.3].

1.2.1.4 The Tilting equivalence for perfectoid algebras. Having discussed the tilt-
ing functor, our next goal is to see that one can again go into the opposite direction,
from characteristic p to characteristic 0. For this we generalize Definition 1.1.38 from
perfectoid fields to perfectoid algebras:

Definition 1.2.24. For any perfectoid K[-algebra S, we define its untilt S] to be

S]◦ := W(S◦) ⊗W (O
K[ ) OK, S] := S]◦[ 1

$ ].
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We can now state the first main result of this lecture, generalising Theorem 1.1.39:

Theorem 1.2.25 (Tilting equivalence). Tilting and untilting define equivalences

{perfectoid K-algebras} ∼−→ {perfectoid K[-algebras}, R 7→ R[, S] ← [ S.

Note that we make no assumption that Char K = 0 (although this is the main case
of interest). In fact, the statement also holds in characteristic p. Then R[ = R.

Proof. Let $ ∈ OK and $[ ∈ OK[ be as before. Then by Exercise 1.2.21, we have

S][◦ = lim←−−F (W(S
◦) ⊗W (O

K[ ) OK )/$ = lim←−−F S◦ ⊗O
K[
OK/$ = lim←−−F S◦/$[ = S◦

where we have used that ker(OK[ → OK/$) is generated by $[.
Recall from Proposition 1.1.35 that W(OK[ ) → OK is surjective and its kernel is

generated by a single element ξ ∈ W(OK[ ). We can therefore identify

W(S◦) ⊗W (O
K[ ) OK � W(S◦)/ξ.

To see that R[] = R , observe that by functoriality of θ, there is a natural map

R[]◦ = W(R[◦) ⊗W (O
K[ ) OK

θ−→ R◦.

If Char(K)= p, this is clearly an isomorphism. Assume now that Char(K)= 0. Then by
the same argument as in the first part of the proof, this map is an isomorphism mod$.
To conclude that the map is is an isomorphism, it therefore suffices to note that both
sides are $-adically complete: Indeed, $ is a non-zero divisor on W(OK[ )/ξ � OK ,
hence ξ is a non-zero divisor mod$. It follows inductively that for any n, the sequence

0→ W(R[◦)/$n ·ξ−→ W(R[◦)/$n → W(R[◦)/(ξ, $n) → 0

is exact. Applying lim←−−n∈N, this shows that W(R[◦)/ξ is $-adically complete.

Remark 1.2.26. Let R be any perfectoid K-algebra. Note that the definition of the tilt
R[ only depends on R◦/p. We can therefore reconstruct R from R◦/p, as follows:

Corollary 1.2.27. There is a natural isomorphism

W(lim←−−F R◦/p) ⊗W (O
K[ ),θ OK

∼−→ R◦.

That such a reconstruction is possible is very surprising! One would usually
expect the passage from R◦ to R◦/p to loose a lot of information. The phenomenon
that we can recover information about the generic fibre R from the mod-p fibre R◦/p
is quite a characteristical property of perfectoid algebras that we again encounter later.
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Remark 1.2.28. Note that when Char(K)= p, Corollary 1.2.27 simplifies to the state-
ment from Exercise 1.2.21 that R◦ = lim←−−F R◦/$. Contemplating this identity gives a
good first intuition for why such perfectoid “reconstruction” results are possible.

Remark 1.2.29. We can now give some indication why uniformity is required in
Definition 1.2.1: Consider R = K 〈X〉/X2. This is a K-Banach algebra for which R◦

contains the whole line K X . Hence R◦ is not bounded, so R is not uniform. In fact,
R◦ = OK + K X and thus R◦/p = OK/p. So F : R◦/p → R◦/p is surjective, but in
some sense for the “wrong” reason! Note for example that R◦/p is too small to be
able to reconstruct R◦ from R◦/p, so we certainly cannot expect phenomena like
Corollary 1.2.27 when we drop the uniformity condition.

1.2.1.5 Aside: Alternative notions of perfectoid rings. The definition of perfectoid
rings has varied a bit over time. The reason is simply that they were quickly used very
widely, and it was desirable to modify the definition slightly for different purposes:

• Recall that by the definition we follow in this course, a perfectoid algebra always
lives over a perfectoid field. There are other, newer definitions of perfectoid spaces
that do not require this assumption. In [SW20, Definition 6.1.1], a perfectoid ring
is instead defined to be a complete Tate ring R that is uniform and such that there
is a pseudo-uniformizer π with πp |p in R◦ for which F : R◦/π → R◦/πp is an
isomorphism. With this definition, there are examples of perfectoid rings that do
not even assume that R contains any field!

• There is also an integral variant of “perfectoid rings”: For example, in [BMS18,
Definition 3.5], a “perfectoid ring” is defined to be a ring S which is π-adically
complete for some element π ∈ S such that πp |p, and for which F : S/π → S/πp
is an isomorphism. An example would be S = R◦ for a perfectoid K-algebra R. In
other works, this notion is also sometimes called an integrally perfectoid ring to
distinguish it from the “analytic” version we consider in these lectures. But there
is currently no single naming convention that is consistently used in the literature.

• There are equivalent integral definitions which are also in use, for example one
using Fontaine’s θ-map [Fon13][BMS18, §3], or in terms of perfect prisms [BS].

Upshot: If one encounters a “perfectoid ring”, this can mean different things in differ-
ent contexts. In practice, this is usually not an issue (and a slight ambiguity in naming
conventions that is clarified in the beginning of an article is quite common, e.g. a
“rigid space” over K might be a rigid analytic space over K in the sense of Tate or an
adic space of locally topologically finite type over Spa(K,OK ) in the sense of Huber).

1.2.2 Almost Purity
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1.2.2.1 The formalism of “almost mathematics”. The proof of Theorem 1.2.25
that Scholze gives in [Sch13a] is different to the one given above, and yields stronger
results. In order to be able to formulate these, we need more machinery:

The first crucial ingredient is the theory of almost mathematics. This was intro-
duced by Faltings and developed in detail by Gabber–Ramero [GR03]. For some
concrete motivation why this notion appears in this context, see §1.2.2.2 below.

Throughout, K is a perfectoid field with uniformizer $ admitting p-power roots.

Definition 1.2.30. (1) Let M be an OK -module. An element m ∈ M is said to be
almost zero if for every x ∈ mK , we have x · m = 0. The module M is said to
be almost zero if every m ∈ M is almost zero. Equivalently, this means that

M ⊗OK
mK = 0.

A morphism of OK -modules is said to be an almost isomorphism if it’s ker-
nel and cokernel are almost zero.

(2) The category of Oa
K -modules is the category of OK -modules localised at the

almost isomorphisms (i.e. it is the quotient of the category of OK -modules
by the almost zero modules). For any OK -module M , we denote by Ma its
image in the almost category. To distinguish between the almost category and
the usual one, we shall also call M an “honest OK -module” and in contrast
call Ma the corresponding “almost OK -module’’.

(3) For any OK -modules M , N with a given map f : M → N , we write M a
= N if

f induces an almost isomorphism between M and N (the “a” is for “almost”).
In particular, M a

= 0 means that M is annihilated by any element in mK .

The book [GR03] develops a whole theory of commutative algebra in the almost
category. A summary that is sufficient for most perfectoid applications is given in
[Sch12, §4]: There is a natural tensor product making Oa

K -modules an abelian tensor
category. In particular, there is a notion of an Oa

K -algebra: This is a commutative
algebra object in Oa

K -modules, or equivalently it is of the form Aa for an OK -algebra
A [GR03, Proposition 2.2.13]. As inverting $ kills $-torsion modules, there is a
“generic fibre” functor R 7→ R[ 1

$ ] from Oa
K -algebras to K-algebras.

Using the natural tensor product, one can define a notion of flat Oa
K -algebras.

Exercise 1.2.31. Let R be a Huber ring over K with ring of integral elements R+ ⊆ R◦.
Then R+ a

= R◦. Hint: Use that any x ∈ mK R◦ is topologically nilpotent.

Second, we have already encountered an almost isomorphism during the proof of
Proposition 1.2.14. Indeed, we can now interpret (1.3) as saying:

Corollary 1.2.32. If A is a perfectoid OK -algebra, then A a
= A[ 1

$ ]◦.

Scholze now introduces the following “almost” version of Definition 1.2.15:
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Definition 1.2.33. (1) Let R be a flat Oa
K -algebra. Like in Exercise 1.2.2, we can

define a morphism of Oa
K -algebras

Φ : R/$1/p → R/$, x 7→ xp

by considering the target as an Oa
K -algebra via F : OK/$→ OK/$. We call

R perfectoid if it is $-adically complete and Φ is an almost isomorphism.
(2) Let R be a flat (OK/$)a-algebra. In the same way as in (1), we can define a

morphism Φ : R/$1/p → R, x 7→ xp that is linear over (OK/$1/p)a, where
we endow the target with an algebra structure via F : OK/$1/p ∼−→ OK/$.
We call R perfectoid if Φ is an isomorphism.

Here the conditions “$-adically complete” and “flat” are understood to be in
terms of almost mathematics. But there is a close relation to perfectoid OK -algebras:

Lemma 1.2.34 ([Sch12, Lemma 5.3, Lemma 5.6]). An Oa
K -algebra R is perfectoid if

and only if R′ := R[ 1
$ ]◦ is a perfectoid OK -algebra in the sense of Definition 1.2.15.

An advantage of the almost setting is that we have the following equivalence:

Proposition 1.2.35. We have an equivalence of categories

PerfK → PerfOa
K
, R 7→ R◦, A[ 1

$ ] ←[ A.

Proof. We need to check that the map A→ A[ 1
$ ]◦ is an almost isomorphism. For

this one can argue like in the proof of (1.3). See [Sch12, Lemma 5.6] for details.

Remark 1.2.36. We can write down the same functors for PerfOK
instead of PerfOa

K
.

But they would not be an equivalence of categories! Indeed, by Exercise 1.2.19, any
ring of integral elements R+ ⊆ R◦ is a perfectoid OK -algebras such that R+[ 1

$ ] = R.
But R+ a

= R◦ by Exercise 1.2.31, hence the two become isomorphic in PerfOa
K
.

You can try this out at the example from Exercise 1.2.19.(2).

Second, there is clearly a reduction functor

PerfOa
K
→ Perf(OK /$)a, A 7→ A/$.

The crucial and surprising point is that this is an equivalence. In fact, Scholze proves:

Theorem 1.2.37 ([Sch12, Theorem 5.2]). We have a commutative diagram of equi-
valences

PerfK PerfOa
K

PerfOa
K /$

PerfK[ PerfOa

K[
PerfOa

K[
/$[

∼
R 7→R◦

[ ∼

∼
A7→A/$

∼

∼
R 7→R◦

∼
A7→A/$[

where the right vertical functor is induced by the isomorphism Oa
K/$ � Oa

K[/$[.
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This also gives a second proof of Theorem 1.2.25. The key step is proving that
any perfectoid Oa

K/$-algebra has a unique lift to a perfectoid Oa
K -algebra. This can

be seen using an almost version of the cotangent complex, which on the one hand
classifies a lifting obstruction, and on the other hand vanishes for perfect algebras.

1.2.2.2 Almost étale ring maps: An illustrative example. Our next goal is to show
that the equivalences in Theorem 1.2.37 match up étale morphisms:

Let A be an Oa
K -algebra. There is a notion of an étale A-algebra in the almost

category. The definition is quite technical as it relies on a lot of “almost commutative
algebra”. We briefly summarise the main definitions here in the notes to give a flavour
of it and refer to [Sch12, §4] for details: Let R be any OK -algebra such that A = Ra.
• An A-module M is flat when − ⊗R M is exact on the category of Ra-modules.
• An A-module N is almost finitely presented if there is an R-module M with N =

Ma for which there is for any ε ∈ mK a finitely presented R-algebra Nε with a
morphism Nε → N that has ε-torsion kernel and cokernel.

• Finally, there is a notion of an unramified A-algebra, defined in terms of “almost
elements”. An A-algebra is called étale if it is flat and unramified. It is called finite
étale if it is étale and almost finitely presented. We denote by Afét the category of
finite étale A-algebras.
That is quite a bunch of technical definitions. In order to get a feeling for what

this definition captures, it is perhaps most helpful to look at an illustrative example:

Example 1.2.38. Assume p , 2 and let K = Fp((t1/p∞)). Consider the finite field
extension L := K(t1/2)|K . This is generated by the element t1/2 which has the charac-
teristic polynomial X2 − t, hence [L : K] = 2. We can think of L |K as the perfection
of any of the finite extensions

Ln |Kn, where Kn := Fp((t1/pn )), Ln := Kn(t1/2).

These are finite extensions of local fields. A uniformizer of Ln is given by πn := t
1

2pn

(Exercise: check this!). The associated extension of rings of integers is

OLn |OKn where OKn = K◦n = Fp[[t
1
pn ]], OLn = L◦n = OKn [πn].

The minimal polynomial of πn is E(X) = X2 − t1/pn . Recall now that there is a quant-
ity measuring the ramification in the extension OLn |OKn , called the different ideal:

δLn |Kn
= E ′(πn)OLn = t

1
2pn OLn .

What do we mean by “measuring”? For an unramified extension the different is OLn .
So we can think of the size of the OLn -module OLn/δLn |Kn

as measuring ramification.
We now take the limit over n: Note that as n→∞, the t-adic valuation of δLn |Kn

is 1
2pn → 0, meaning that the extension becomes “less and less ramified”.
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Exercise 1.2.39. (1) Prove that the extension OL |OK is no longer finite! Hence
finite extensions of perfectoid fields behave quite a bit differently to what we
are used to from local fields. Hint: That t

1
2pn ∈ OLn for all n can be seen by

the Euclidean algorithm, namely there are j, k ∈ Z such that j
pn +

k
2 =

1
2pn .

However, we cannot take j, k ≥ 0.
(2) Convince yourself that one can still make sense of the different ideal δL |K

using the trace TrL |K of the finite extension L |K . Use this to show δL |K =mL .

This illustrates in what sense the extension OL |OK is “almost finite étale”: It
is approximated by the almost finitely presented extensions OK [πn]|OK (⇒ almost
finitely presented), and the quotient module OL/δL |K measuring its ramification is
almost zero (⇒ almost unramified). But in terms of “honest” rather than almost com-
mutative algebra, it is neither finite nor étale.

Exercise 1.2.40. Compute the different ideal of the almost finite étale extension OL |OK
where K := Qp 〈p1/p∞〉 and L := K(p1/n) is its finite extension defined by Xn − p
where n ∈ N is coprime to p. This is a characteristic 0 analogue to the above example.

Phenomena as discussed above were well-known early on in p-adic geometry, see
e.g. [Tat67, §3], or [BGR84, §3.6.1, §6.4.1] where the fact that OL |OK need not be
finite is discussed at the example of what we today call the perfectoid fieldQp 〈p1/p∞〉.

1.2.2.3 Statement of Almost Purity. In §1.2.2.2, we have just seen a finite étale
extension L |K of perfectoid fields which gives rise to an almost finite étale extension
OL |OK . It turns out that this works much more generally for perfectoid K-algebras:

Theorem 1.2.41 ([Sch12, Theorems 1.10 and 7.9]). Let K be a perfectoid field and R
a perfectoid K-algebra. The equivalences of Theorem 1.2.37 restrict to equivalences

Rfét R◦afét (R◦a/$)fét

R[fét R[◦afét (R[◦a/$[)fét.

∼
R 7→R◦

∼
A7→A/$

∼

∼
R 7→R◦

∼
A7→A/$[

That A 7→ A/$ is an equivalence follows from the almost version of Henselian
lifting. This time, proving that R 7→ R◦ is an equivalence is where the main work
is. This is one of the main results of [Sch12]. The statement can be reformulated as
follows:

Theorem 1.2.42 (Almost purity). Let R be a perfectoid K-algebra. Then for any finite
étale ring extension S |R, the extension S◦ |R◦ is almost finite étale.

This generalises a result of Faltings [Fal02, 4. Theorem]. For perfectoid fields, it
can be proved using earlier arguments by Tate [Tat67] and Gabber–Ramero [GR03].
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The basic idea for Scholze’s proof of Theorem 1.2.42 is to first prove the state-
ment in characteristic p, where ramification can be made arbitrarily small by iterating
the Frobenius. He then deduces the result in characteristic 0 by tilting. This is hard:
He uses a geometric argument in terms of perfectoid spaces to eventually reduce to
perfectoid fields.

Corollary 1.2.43. Let R→ S be a finite étale map where R is a perfectoid K-algebra.
Then S is a perfectoid K-algebra. Tilting thus induces an equivalence of sites

−[ : Rfét
∼−→ R[fét.

Proof. As S is finite projective over R, it inherits a natural K-Banach algebra structure
from R. In characteristic p, the statement now follows from Exercise 1.2.44 below
combined with Exercise 1.2.6. The result in general follows from Theorem 1.2.41 via
untilting, i.e. comparing the diagram to that in Theorem 1.2.37.

Exercise 1.2.44. Let R be a perfect Fp-algebra. Let R→ S be étale. Show that S is
still perfect. Hint: Show that the absolute Frobenius morphism F : Spec(S)→ Spec(S)
is étale and a universal homeomorphism. This implies that it is an isomorphism.

Remark 1.2.45. Since it is the most difficult step in the proof, many authors just say
“by almost purity” when they invoke Theorem 1.2.41 or Corollary 1.2.43.

1.3 Perfectoid spaces

1.3.1 Affinoid perfectoid spaces

Having discussed perfectoid K-algebras, we now pass from algebras to spaces.

Definition 1.3.1. An affinoid perfectoid space over K is an adic space of the form

X = Spa(R, R+)

for a perfectoid K-algebra R and any ring of integral elements R+ ⊆ R◦. Recall from
the course on adic spaces that this means that R+ is open and integrally closed in R.

Remark 1.3.2. At first reading, it is ok not to worry too much about R+. We can
always take R+ = R◦. In fact, by Exercise 1.2.31, this is “almost the only choice”.

That all being said, the greater generality of R+ is useful in general. An example
for a ring of integral elements R+ ⊂ R◦ with R+ , R◦ is described in Exercise 1.2.19.

1.3.1.1 Rational subspaces. The first goal of this section is to show that any affinoid
perfectoid space is a sheafy adic space. This is not easy to see. We will deduce it from
a different result which is in itself very interesting:
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Theorem 1.3.3 ([Sch12, Theorem 6.3]). Any rational subspace of an affinoid per-
fectoid space is again an affinoid perfectoid space.

This means that for any f1, . . . , fr ∈ R generating the unit ideal in R and any g ∈ R,
the rational localisation R〈 f1g , . . . ,

fr
g 〉 is automatically a perfectoid K-algebra.

Exercise 1.3.4. Prove this by hand in the case of R = K 〈T1/p∞〉, f1 = 1, g = T .

Corollary 1.3.5. Any affinoid perfectoid space is a sheafy adic space.

Proof. As perfectoid rings are uniform, Theorem 1.3.3 implies that affinoid perfectoid
spaces are stably uniform. The result now follows from the Theorem of Mihara and
Buzzard–Verberkmoes (“stably uniform affinoids are sheafy”) [Mih16][BV18]

We give a sketch of the proof of Theorem 1.3.3: Once again, the idea is to first
prove the statement when Char(K) = p, and deduce the case of Char(K) = 0 by untilt-
ing. For this we first need to make sense of “tilting and untilting rational subspaces”.

As the very first step, we observe that tilting identifies integral subrings:

Lemma 1.3.6 ([Sch12, Lemma 6.2]). Sending R+ 7→ R+[ := lim←−−F R+/p defines a
bijection

{subrings of integral elements of R◦} ∼−→ {subrings of integral elements of R[◦}.

Proof. By Exercise 1.3.7 below, subrings of integral elements of R◦ correspond biject-
ively to integrally closed subrings of R◦/$. The same description applies to R[◦ and
R[◦/$. Now we use that R◦/$ � R[◦/$.

Exercise 1.3.7. Show that sending A 7→ A/$ defines a bijection between the integ-
rally closed open subrings A ⊆ R◦ and the integrally closed subrings of R◦/$. Hint:
Show first that $R◦ ⊆ R◦ is contained in any integrally closed open subring of R◦.

Definition 1.3.8. For any affinoid perfectoid space X = Spa(R, R+), we set

X[ := Spa(R[, R+[).

This is evidently an affinoid perfectoid space over K[. The next aim is to define a
morphism of topological spaces |X | → |X[ |.

Lemma 1.3.9. For any valuation v : R→ Γ, the map of sets v[ : R[
]
−→ R

v−→ Γ is a
valuation of R[. Here ] : R[ → R is the sharp map from Section 1.2.1.3.

Exercise 1.3.10. Prove this! Hint: The main work lies in proving that v[(a + b) ≥
min(v[(a), v[(b)). For this, use that (a + b)] = limn(a1/pn] + b1/pn])pn .
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We can use this to define a map of sets

−[ : |X | = | Spa(R, R+)| → |X[ | = | Spa(R[, R+[)|, v 7→ v[.

For any open subspace U ⊆ X , we denote its image under this map by U[ ⊆ X[.

Theorem 1.3.11. The map −[ : |X | → |X[ | is a homeomorphism which identifies the
rational subspaces on both sides. For any rational openU ⊆ X , we have isomorphisms

OX(U)[ = OX[ (U[), O+X(U)[ = O+X[ (U[).

Proof of Theorems 1.3.3 and 1.3.11. The proof of these results is a bit involved and
intertwined. It is completed in several steps that we now sketch, following [Sch12, §6].

Step 1: For any rational open U := X[( f1,..., frg ) ⊆ X[, set U] := X( f
]

1 ,..., f
]
r

g] ). Then one
can verify by hand that U] is the preimage of U under −[. This shows that rational
opens pull back to rational opens, hence −[ is continuous.

Step 2: One proves that U is affinoid perfectoid, i.e. Theorem 1.3.3 holds in char-
acteristic p. To simplify notation, let us treat the case of r = 1, the general case is
entirely analogous but requires more notation: We consider the ring

S0 := R+〈( fg )
1
p∞ 〉 := R+〈T1/p∞〉/I

where I is the closure of the ideal ( f 1/pn − T1/pn
g1/pn |n ∈ N). Then we have:

Exercise 1.3.12. S0 is a perfectoid Oa
K -algebra.

It follows from Theorem 1.2.37 that S0[ 1
$ ] is a perfectoid K-algebra.

Step 3: Using Theorem 1.2.37, an explicit computation of the algebras mod$ shows

OX(U]) = OX[ (U)] .

As OX[ (U)] is a perfectoid K-algebra, and as we know from Step 1 that U] is affinoid
(it is rational open in an affinoid adic space), this shows that U] is affinoid perfectoid.

Step 4: We show −[ : |X | → |X[ | is surjective: This relies on the following lemma.

Lemma 1.3.13. For any point x ∈ X , the completed residue field k̂(x) is a perfectoid
field. In particular, there is a morphism z : Spa(L, L+) → X of adic spaces, where L
is a perfectoid field, such that x is in the image.

Remark 1.3.14. This illustrates why it is important to include general integral sub-
rings L+: The lemma is wrong if we only allow L◦, as this does not give all of |X |!
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We now use Theorem 1.2.37 and untilt z. This yieds a commutative diagram

Spa(L], L]+) X

Spa(L, L+) X[.

−[

z]

−[

z

It is easy to see that the left map is bijective. Hence x is in the image of the right map.

Step 5: By approximating elements of R by images of ] : R[ → R, one shows that
any rational subspace U ⊆ X is of the form U ′] for some rational subspace U ′ ⊆ X[.
By a topological argument for spectral spaces, this shows that |X | → |X[ | is injective.
As it is surjective by step 4, another spectral space argument deduces that it is a
homeomorphism. In particular, the rational subspace U ′ is uniquely determined. This
shows the remaining statement that −[ identifies rational subspaces.

By combining Theorem 1.3.11 and Theorem 1.2.37, we deduce via sheafification:

Corollary 1.3.15. Let X be an affinoid perfectoid space. Then via the identification
|X | � |X[ | we can regard sheaves on X[ as sheaves on X . Via this identification, we
have an isomorphism

] : O+
X[/$[ ∼−→ O+X/$.

Exercise 1.3.16. Prove this. Also show that the sharp maps for rational subspaces can
be assembled to a multiplicative morphism of sheaves ] : OX[ → OX .

Summarising the results of this subsection, the tilting equivalence gives us a very
close relation between the affinoid adic spaces defined by R and the adic spaces
defined by its tilt R[. The proof of sheafiness is quite hard, but “perfectoid in nature”
in that it used the tilting equivalence to go back and forth between characteristics.

Remark 1.3.17. Given an affinoid adic space X without Noetherian assumptions,
it is usually difficult to verify directly that it is sheafy. The Theorem of Mihara /
Buzzard–Verberkmoes that “stably uniform affinoids are sheafy” gives a great cri-
terion. But even proving that X is stably uniform can be tricky in practice, as it can be
quite difficult to describe rational localisations explicitly enough to verify technical
properties. Perfectoid spaces can actually help with this by giving a new criterion for
sheafiness that does not require computation of rational opens: Hansen–Kedlaya have
introduced the notion of sousperfectoid spaces [HK][SW20, §6.3]. An adic space
is sousperfectoid if it can be covered by affinoid opens Spa(A, A+) where A admits
an injection A ↪→ A∞ into a perfectoid algebra A∞ that has a continuous A-module
splitting. They show that any sousperfectoid space is stably uniform, hence sheafy.
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1.3.1.2 Globalisation. Now that we know that affinoid perfectoid spaces have good
localisation properties, we can proceed to the central definition of this lecture course:

Definition 1.3.18. An adic space X over K is called a perfectoid space if it has an
open cover X = ∪Ui by affinoid perfectoid spaces Ui over K .

It is immediate from Theorem 1.3.11, specifically the compatibility of tilting with
the formation of rational subspaces, that the tilting functor X 7→ X[ glues:

Theorem 1.3.19. (1) There is a natural equivalence of categories

{perfectoid spaces over K} → {perfectoid spaces over K[}, X 7→ X[.

(2) Let X be a perfectoid space. Then there is a canonical homeomorphism

−[ : |X | ∼−→ |X[ |

that identifies the affinoid perfectoid open subspaces on both sides. With respect
to this homeomorphism, we have an isomorphism ] : O+

X[/$[ ∼−→ O+X/$.

Exercise 1.3.20. Check that this follows from Theorem 1.3.11 and Corollary 1.3.15.

Exercise 1.3.21. Verify that via the identification |X | = |X[ | from Theorem 1.3.19,
there are also sheaf versions of ] and θ on X , namely natural morphisms

] : OX[ → OX, OX[
∼−→ lim←−−x 7→xp

OX, θ : W(O+
X[ ) → O+X .

1.3.1.3 Almost purity for perfectoid spaces. There is also a global version of the
Almost Purity Theorem from §1.2.2.3. For this we first recall that there is a good
notion of étale morphisms of adic spaces:

Definition 1.3.22 ([Sch12, Definition 7.1]). (1) A morphism f : X → Y of adic
spaces over K is finite étale if for any affinoid open subspaceU =Spa(A, A+) ⊆
Y , the pullback f −1(U) = Spa(B, B+) is affinoid, the induced map A→ B is
finite étale and B+ is the integral closure of A+ inside B. A morphism X → Y
of adic spaces over K is étale if locally on source and target, it is the compos-
ition of an open immersion X → Z followed by a finite étale map Z → Y .

(2) Let X be an adic space6. The étale site Xét is the category of étale morphisms
Y → X endowed with the following Grothendieck topology: A collection of
morphisms ( fi : Yi → Y )i∈I over X is a cover if ∪i∈I fi(|Yi |) = |Y |.

Lemma 1.3.23. Let f : Y → X be an étale morphism of adic spaces over K . If X is
a perfectoid space, then so is Y .

6To ensure that Xét is a site, it is best to impose some technical condition on X that implies
sheafiness of étale covers. For example, sousperfectoidness (Remark 1.3.17) is such a property.
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Proof. The statement is local, so we may assume that Y is affinoid and X is affinoid
perfectoid. By the definition of étale morphisms, f is locally a composition of rational
opens and finite étale maps, so we may reduce to these cases. Any open subspace of
a perfectoid space is perfectoid by Theorem 1.3.3 (see also Example 1.3.26 below).
If f : Y → X is finite étale, then O(X) → O(Y ) is finite étale, and it follows from
Corollary 1.2.43 that Y is affinoid perfectoid.

Theorem 1.3.24. For any perfectoid space X , tilting induces an equivalence of sites

−[ : Xét
∼−→ X[ét

that identifies the finite étale objects on both sides.

Exercise 1.3.25. Check that this follows from Theorem 1.3.19 and Lemma 1.3.23.

1.3.1.4 Examples of perfectoid spaces.

Example 1.3.26. Any open subspace of a perfectoid space is perfectoid: This follows
from Theorem 1.3.11 as rational opens form a basis of |X | for any affinoid X .

Exercise 1.3.27. An example of an affinoid perfectoid space is the perfectoid ball

B∞ := Spa(K 〈T1/p∞〉,OK 〈T1/p∞〉)

associated to the perfectoid algebra of Example 1.2.7 and Proposition 1.2.8. Show that
this represents the functor that sends any perfectoid space Y over K to H0(Y,O+

Y[ ).

Example 1.3.28. An example of a perfectoid subspace that is not affinoid perfectoid:
Let X = B∞ be the perfectoid unit ball from Exercise 1.3.27. Then the open ball
defined by

X =
⋃

n∈N X(|T | ≤ 1 − 1
pn )

is an example for a non-quasi-compact, hence non-affinoid perfectoid space.

Example 1.3.29 ([Sch15, Definition III.2.18]). Assume that char(K) = p. Let Y =
Spa(R, R+) be any sheafy affinoid adic space over K , for example a rigid space. Recall
from Proposition 1.2.12 that there exists a perfection (Rperf, R+,perf) of (R, R+). This
induces an affinoid perfectoid space Yperf := Spa(Rperf, R+,perf) → Y . It is easy to see
that this is a homeomorphism on the underlying sets, and that −perf commutes with
rational localisation. Consequently, due to the sheafiness assumption, we can glue this
to a functor which sends any sheafy adic space over K to a perfectoid space

Yperf → Y



Perfectoid Spaces 37

such that |Yperf | = |Y |. The map Yperf → Y is called the inverse perfection of Y ,
because one can make precise the idea7 that it is the “projective limit lim←−−F Y”.

Exercise 1.3.30. Prove that −perf is the right adjoint to the forgetful functor from
perfectoid spaces over K to sheafy adic spaces over K .

Example 1.3.31. Let T = Spa(K 〈T±1 , . . . , T
±
d
〉) be the affine torus of dimension d

over K . This is a rigid group, with group structure coming from the multiplicative
structure. Consider the p-multiplication map [p] : T→ T, this is given on coordinates
by Ti 7→ T p

i . In particular, in characteristic p this is the relative Frobenius map, and in
characteristic 0 it is a “lift of Frobenius” (T is the adic generic fibre of an admissible
formal scheme over OK , and φ has a formal model which reduces to the Frobenius
mod p). By Exercise 1.2.11, we get in the limit an affinoid perfectoid space

T∞ = Spa(K 〈T
± 1

p∞

1 , . . . ,T
± 1

p∞

d
〉).

Example 1.3.32. Let PnK be the rigid analytic projective n-space over K . Consider
the morphism

φ : PnK → PnK, (x0, . . . , xn) 7→ (xp
0 , . . . , xp

n ).

If Char(K) = p, this is the relative Frobenius map, so we can form the inverse perfec-
tion (Example 1.3.29), i.e. the “inverse limit” of the tower . . .

φ
−→ PnK

φ
−→ PnK

φ
−→ PnK to

get a perfectoid space Pn,perf
K . There is a similar construction when Char(K) = 0: Here,

φ is again a “lift of Frobenius”, so in the limit, we get at a perfectoid space Pn,perf
K .

Exercise 1.3.33. Verify this and prove that Pn,perf,[
K = P

n,perf
K[ .

Remark 1.3.34. In particular, by Theorem 1.3.11 we have |Pn,perf
K | = |Pn,perf

K[ |. It is
very tempting to try to use this to tilt projective varieties! Namely, one could take
any closed Z ⊆ Pn, pull this back to Pn,perf

K , tilt, and hope that one can “unperfect”
the result to a variety in characteristic p. This usually does not work though: The
resulting subspace of Pn,perf

K[ is in general transcendental and does not descend to
a closed subspace of Pn

K[ . However, in some cases, it does work! This is used by
Scholze in [Sch12] to prove the weight monodromy conjecture for toric varieties.

Example 1.3.35. Let A be an abelian variety of good reduction over K . Let A be
its formal model over Spf(OK ). Consider the tower · · · → A

[p]
−−→ A

[p]
−−→ A of multi-

plication by p maps. On the fibre over Spf(OK/p), the morphism [p] factors through
the relative Frobenius morphism. It follows that the adic generic fibre of the limit

7It is not literally the limit in the category of adic spaces, but for example one can use the
weaker notion of tilde-limits from [Hub96, §2.4][SW13, §2.4].
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lim←−−[p] A is a perfectoid space A∞. We will study this example further in §1.4, see
Example 1.4.24.

Example 1.3.36. A famous example with arithmetic applications is the tower of mod-
ular curves (X(pn))n∈N with Γ(pn)-level structure. Scholze proves in [Sch15] that this
becomes perfectoid in the limit n→∞, leading to the perfectoid modular curveX(p∞)

Remark 1.3.37. There is a clear pattern here: In all of the above examples, perfectoid
spaces arise as covers of rigid spaces that are “infinitely wildly ramified mod p” in
a precise sense, exactly like perfectoid fields arose in Lecture 1 as infinitely wildly
ramified towers of local fields. Indeed, this is one way that perfectoid spaces are used
in practice: Say we wish to prove a statement about a rigid spaceY . Roughly speaking,
one strategy is to “pull back” the problem to a perfectoid covering space Y∞ → Y ,
which might first look like a much more difficult object, but has favourable technical
properties (of which we have already seen a few, notably Almost Purity, and we are
going to see more soon). One then tries to solve the problem on Y∞, and descend the
solution back down to Y .

Remark 1.3.38. Warning: It is still an open question whether a perfectoid space that
is affinoid as an adic space is affinoid perfectoid. This might first seem like a tautology,
but it is not! Namely, it’s not clear that a Huber pair (R, R+) for which Spa(R, R+) can
be covered by affinoid perfectoids is itself affinoid perfectoid.

1.3.1.5 Fibre products of perfectoid spaces. In general, fibre products of adic spaces
can be a bit of a thorny issue, as in general they do not always exist due to issues with
sheafiness. Luckily, this is no problem for perfectoid spaces:

Proposition 1.3.39. Let X → Y , Z → Y be morphisms of perfectoid spaces over K .
Then the fibre product X ×Y Z exists in the category of adic spaces over K and is a
perfectoid space over K . If X , Y , Z are affinoid perfectoid, then so it X ×Y Z .

Proof. As usually, one reduces to the case that X = Spa(A, A+), Y = Spa(B, B+) and
Z = Spa(C,C+) are affinoid perfectoid. Recall that the images of A+, B+ and C+ in
the almost category are perfectoid Oa

K -algebras. One can use this to see:

Exercise 1.3.40. Verify directly that D0 := A+⊗̂C+B+ is also a perfectoid Oa
K -algebra

Let now D := A+⊗̂C+B+[ 1
$ ] and let D+ be the integral closure of D0 in D. Then

W := Spa(D,D+) is affinoid perfectoid. One easily verifies that W is the fibre product.
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1.3.2 Almost Acyclicity

Scholze’s proof that affinoid perfectoid spaces are sheafy is different to the one above8.
Instead, he proved the stronger Almost Acyclicity Theorem, which we discuss next.

1.3.2.1 Acyclicity of OX . Let X be a sheafy affinoid adic space. Then the sheafy
hypothesis automatically guarantees that OX is not only a sheaf but in fact an acyclic
sheaf. This means that

Hn(X,OX) = 0 for n ≥ 1.

Equivalently, for any affinoid cover U of X , the augmented Čech complex

Č∗(U,OX) =
[
OX(X) →

∏
U∈U
OX(U) →

∏
U1,2∈U

OX(U1 ∩U2) → . . .
]

is automatically exact if it is left-exact. Recall now that the integral subsheaf O+X is
also a sheaf – this is automatic from the description that for f ∈ OX(U), we have

f ∈ O+X(U) ⇔ | f (x)| ≤ 1 for all x ∈ U.

However, it is not true in general that Hn(X,O+X) vanishes for any n ≥ 1. In fact, this
already fails for many rigid spaces. Since OX = O+X[

1
$ ] and formation of cohomology

commutes with inverting $ (because X is quasi-compact), we know that

Hn(X,O+X)[ 1
$ ] = Hn(X,OX) = 0 for n ≥ 1. (1.4)

This shows that any element in Hn(X,O+X) is $-power torsion.

1.3.2.2 Almost Acyclicity of O+X . One of the key technical properties of affinoid
perfectoid spaces is that the cohomology of O+ can be controlled for them:

Theorem 1.3.41. Let X be an affinoid perfectoid space over K . Then for any n ≥ 1,

Hn(X,O+X)
a
= 0.

Exercise 1.3.42. Deduce that H0(X,O+X)/$
a
= H0(X,O+X/$).

Proof. We give a sketch of the proof of Theorem 1.3.41:

8In fact, the stably uniform criterion wasn’t found yet at the time of his thesis. And it may
well not have been found without it. The proof does not use perfectoid spaces, but many people
only started studying non-Noetherian adic spaces (or indeed any kind of adic spaces) because
of Scholze’s work.
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Step 1: Once again, one first proves the case of Char(K) = p and deduces the case of
Char(K) = 0 via tilting. We first explain how this reduction to characteristic p works:

Exercise 1.3.43. Suppose we know already that Theorem 1.3.41 holds in character-
istic p. Let X be an affinoid perfectoid K-algebra of characteristic 0. Show that we
have Hn(X,O+/$) a

= 0. Hint: Use Corollary 1.3.15.

As usual, we can compute O+-cohomology by considering Čech cohomology on
a basis of the topology, for which we take the rational opens of X . Let thus U be
any rational open cover of X and consider the Čech complex Č∗(U, O+X). By Exer-
cise 1.3.43, we have Hn(U,O+X/$)

a
= 0. By the Čech-to-sheaf spectral sequence, it fol-

lows that Č∗(U,O+X)/$ is almost exact. As Č∗(U,O+X) is a complex of flat $-adically
complete OK -modules, the case of Char(K) = 0 now follows from the following fact:

Exercise 1.3.44. Let C• be a bounded complex of flat $-adically complete OK -
modules. Suppose that Hn(C•/$) a

= 0 for all n. Then Hn(C•) a
= 0 for all n.

Step 2: We have thus reduced to the case that Char(K) = p. Write X = Spa(A, A+).
We now further reduce to the case that X = Yperf is the inverse perfection of a rigid
space Y (Example 1.3.29). The idea for this is to write A+ = lim−−→i∈I

Bi as a colimit
of subalgebras Bi of topologically finite type over OK : This is always possible as
A+ ⊆ A◦.

Given such a “rigid approximation” of X , write Yi := Spa(Bi[ 1
$ ], B+i ) where B+i is

the integral closure of Bi in Bi[ 1
$ ]. Then one can show that for any n ≥ 0, one has

Hn(X,O+/$) a
= lim−−→i∈I

Hn(Yperf
i ,O+/$).

It thus suffices to consider Yperf
i .

Remark 1.3.45. This was a topological algebra analogue of “Noetherian approxim-
ation”, a standard procedure to reduce algebraic problems to finite type K-algebras.

Step 3: Assume that X = Yperf for a rigid space Y . Recall from Example 1.3.29 that
the natural map Yperf → Y induces a homeomorphism |Yperf | = |Y | which we can use
to regard sheaves onYperf as sheaves onY . Let us denote the integral structure sheaf of
Y by O+Y and the one of Yperf by O+

Yperf . As before, the goal is to compute Hn(Y,O+
Yperf )

using Čech cohomology. For this, we start with Hn(Y, O+Y ): Let U be any rational
cover of Y . Recall that the Čech cohomology group

Ȟn(U,O+Y )

is by definition the cohomology in degree n of the complex of Čech cochains∏
U∈U
O+Y (U) →

∏
U1,2∈U

O+Y (U1 ∩U2) → . . . .
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Recall that intersections U1 ∩ · · · ∩Uk of rational open subspaces are again rational,
hence affinoid. Therefore, by the same argument as in (1.4), this complex becomes
exact in degree ≥ 1 after inverting $ due to acyclicity of OX on affinoid subspaces.

We now crucially use that each OY (U1 ∩ · · · ∩ Uk) is in particular a K-Banach
space. A neat topological algebra argument using Banach’s Open Mapping Theorem
(see [Bha17, Proposition 9.3.3 ]) shows that Ȟn(U,O+Y ) is in fact of bounded torsion:
There is 0 , x ∈ OK such that multiplication by x is = 0 on Ȟn(U,O+Y ) for any n ≥ 0.

To compute Ȟn(U, O+
Yperf ), we now take the limit over F on Y . To distinguish the

different copies of Y in the Frobenius tower, let us define Ym := Y for every m ∈ N so
that the tower becomes

. . .
F−→ Y3

F−→ Y2
F−→ Y1 = Y .

Now comes the cool trick: Consider the tower of Frobenius on the resulting Čech
complexes. This is a tower (written vertically) of complexes (written horizontally)∏

U O+Y1
(U) ∏

Ui j
O+Y1
(Ui ∩Uj)

∏
Ui, j,k

O+Y1
(Ui ∩Uj ∩Uk) . . .

∏
U O+Y2

(U) ∏
Ui j
O+Y2
(Ui ∩Uj)

∏
Ui, j,k

O+Y2
(Ui ∩Uj ∩Uk) . . .

. . . . . . . . .

F F F

F F F

where each F is given by x 7→ xp. Note that these maps are not K-linear, rather they
are semilinear with respect to F : K → K , x 7→ xp. Hence the morphism of sheaves

F : OY1 → OY2

becomes K-linear if we instead endow OY2 with the K-linear structure via F : K →
K . Iterating this construction, to make the diagram K-linear, we need to endow the
sections of OYm with a new K-vector space structure ∗m defined for any a ∈ K and
any section y of O+Ym by

a ∗m y = apm · y.

Having set this all up, the point is now that since Ȟn(U, O+Y ) is killed by x, this
means for the new K-linear structure on O+Ym that for any y ∈ Ȟn(U,O+Ym ),

x1/pm ∗m y = x · y = 0.

Hence Ȟn(U, O+Ym ) is killed by x1/pm . Since v(x1/pm ) → 0 for m → ∞, we have
mK = (x1/pm

,m ∈ N). So
lim−−→F

Ȟn(U,O+Ym )
a
= 0

with respect to its K-linear structure via ∗m in the m-th entry.
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It is then easy to see using Exercise 1.3.44 applied to the augmented Čech complex
that the same still holds after completing the complex $-adically. Consequently,

Ȟn(U,O+
Yperf )

a
= 0,

as we wanted to see.

Remark 1.3.46. The same argument in cohomological degree 0 shows that

Ȟ0(U,O+
Yperf )

a
= O+Y (Y )perf .

After inverting p it follows for X = Yperf that Ȟ0(U,OX) = OX(X). This is Scholze’s
proof that OX (and hence automatically O+X) is a sheaf on perfectoid spaces: It basic-
ally arises as a side product of the proof of the Almost Acyclicity Theorem.

1.3.2.3 A variant for the étale topology. The same line of argument also works in
the étale topology, i.e. for the site Xét from Definition 1.3.22. For this one additionally
uses the Tilting Equivalence for étale sites Theorem 1.3.24:

Theorem 1.3.47. Let X be an affinoid perfectoid space over K . Then OX is a sheaf
on Xét and

Hn
ét(X,O

+
X) := Hn(Xét,O+X)

a
= 0 for n ≥ 1.

Remark 1.3.48. This result is even more remarkable than the version of Almost
Acyclicity for the analytic topology: Let X be instead an affinoid rigid space. While
it is still possible in good cases to control H∗an(X, O+), the étale cohomology groups
H∗ét(X,O

+) tend to be difficult to control. For example, even for the unit disc B1 over
an algebraically closed field (one of the nicest and most well-behaved adic spaces that
you could possibly imagine), we have Hi

an(B1,O+) = 0 for i ≥ 1, but the étale cohomo-
logy group H2

ét(B
1, O+) is huge and has unbounded p-torsion (see Exercise 1.4.42

below). A related issue is that while Hn
an(X,O) = Hn

ét(X,O) for any rigid space X , the
natural map

Hn
an(X,O+) → Hn

ét(X,O
+)

is usually not an isomorphism.

Remark 1.3.49. Note that even though we have already proved that X is a sheafy
adic space, it does not immediately follow that OX is also a sheaf on Xét. For rigid
spaces, this is known by the work of Huber [Hub96] (which is required for the proof).

But in fact, there would also be a more direct way to deduce this from sheafiness
of X: Namely, under very mild assumptions, [KL15, Theorem 8.2.22] says that it is
more generally true that sheafiness of OX on X implies sheafiness of OX on Xét.

In conclusion, we can add Almost Acyclicity of O+ to our list of “favourable
properties of perfectoid spaces” and keep in mind that étale cohomology of O+ is
much more manageable for perfectoid spaces than it usually is, even for rigid spaces.
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1.4 Applications to p-adic Hodge theory

As an application of the discussion so far, we now give an example of how perfectoid
spaces are used in practice, in applications to p-adic Hodge theory. For this we will
roughly follow [Sch13a, §3-§4]. As a first step, we need to introduce a topology on a
rigid space which is much finer than the étale topology, so it “sees perfectoid spaces”:

1.4.1 The pro-étale site

Recall that for any scheme S, we have a hierarchy of topologies

Sfpqc → Sfppf → Sét → SZar,

written as morphisms of sites. For an adic space X over K , we have seen the topologies

Xét → Xan

where Xan refers to the site associated to the topological space |X |. Already for these
sites, proving that OX is a sheaf was hard. But it is a priori not clear how to find
an analogue of the fpqc topology in the analytic context. As it turns out, the key
to finer sites on X is to consider categories over X that are large enough to contain
perfectoid spaces, with topologies that are “locally perfectoid”. To make this precise,
we take inspiration from the examples on perfectoid spaces in §1.3.1.4: In particular,
the perfectoid cover

T∞ := (→ . . .
[p]
−−→ T

[p]
−−→ T)

of the torus from Example 1.3.31, or the perfectoid cover E∞ → E of an elliptic
curve defined by the tower→ . . .

[p]
−−→ E

[p]
−−→ E from Example 1.3.35. Both of these

are examples of towers of finite étale maps over a rigid space that “become perfectoid
in the limit”. Our aim is to introduce a topology on X that refines the étale topology
and includes such towers as covers.

1.4.1.1 Definition of the pro-étale site. From now on, we fix a non-archimedean
field K over Qp, i.e. we assume that K has characteristic 0 and residue characteristic
p. Let X be a rigid space over K , considered as an adic space. Roughly following
[Sch13a, Definition 3.9], we now define the pro-étale site of X:

Definition 1.4.1. We define a category Xproét as follows:
(1) Objects are the small cofiltered inverse systems (Ci)i∈I of objects of Xét for

which there is j ∈ I so that for i ≥ j, the map Xi→ Xj is surjective finite étale.
(2) The morphisms are the morphisms between pro-objects. Explicitly, given C =
(Ci)i∈I and D = (Dj)j∈J in Xproét, this means that we have

MapXproét
(C,D) = lim←−−

j∈J
lim−−→
i∈I

MapXét
(Ci,Dj).
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Remark 1.4.2. What does “small” mean in (1): We would like to allow I to be any
small index category. Unfortunately, there are genuine set-theoretic issues! This is
solved by fixing a cut–off cardinal κ, and only allowing index sets of cardinality ≤ κ,
see [Sch16, (1)][Sch18, §4]. In practice, one often uses countable inverse systems, for
which this issue does not arise. For our purposes, we will thus ignore this issue.

For example, the pro-systems mentioned just before §1.4.1.1 define objects in
Xproét. To endow this category with a topology, we need to introduce the following:

Definition 1.4.3. Any object C = (Ci)i∈I in Xproét has an associated topological space

|C | := lim←−−i∈I |Ci |

that we can use e.g. to speak of an analytic cover of C. This construction is functorial,
i.e. morphisms in Xproét induce continuous maps of the associated topological spaces.

Definition 1.4.4. Let f : (Ci)i∈I → D = (Di)i∈I be a morphism in Xproét.
(1) f is called étale if there is a morphism Ci → Di in Xét for some i ∈ I such

that f is isomorphic to D ×Di Ci → D.
(2) f is finite étale if moreover Ci → Di can be taken to be finite étale.
(3) f is pro-étale if f = lim←−− fj for a cofiltered inverse system of étale maps ( fj :

C j → D)j∈J with C j ∈ Xproét for which ∃k ∈ J such that C j → Ck is finite
étale for all j ≥ k.

Definition 1.4.5. We endow Xproét with a Grothendieck topology as follows: A family
of morphisms ( fj : C j → D)j∈J in Xproét is a cover if each fj is pro-étale and⋃

j∈J fj(|C j |) = |D |.

We call Xproét endowed with this Grothendieck topology the pro-étale site of X .

Lemma 1.4.6 ([Sch13a, Lemma 3.10]). The pro-étale site is a site.

Given that Xproét is a site, it is clear that there is a natural morphism of sites

ν : Xproét → Xét

sending any étale morphism Y → X to the pro-system (Y ) indexed over the singleton.
Let us give some less trivial examples of objects in the pro-étale site:

Example 1.4.7. The system . . .
[p]
−−→ T

[p]
−−→ T in Example 1.3.31 is a pro-étale cover

of T. The system . . .
[p]
−−→ E

[p]
−−→ E in Example 1.3.35 is a pro-étale cover of E .

Example 1.4.8. To any finite set S, we can associate an object S of Xét, defined as the
morphism tSX → X . For any profinite set S = lim←−− Si , we thus obtain an object

S := lim←−−i∈I Si = lim←−−i∈I tSi X ∈ Xproét.
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This is a pro-finite-étale cover of X . We can use this to explain the relevance of the
“pro-étale” assumption in the definition of covers: Namely, we note that S is different
from the disjoint union tSX: For example, if X = Spa(K), then |S | is S endowed
with its natural profinite topology, whereas | tS X | = Sdisc is the topological space
consisting of S endowed with the discrete topology. There is clearly a natural map
f : tSX → S, which induces the identity Sdisc → S on the underlying topological
spaces. This is an example of a morphism in Xproét that is a set-theoretic cover, but is
not considered to be a cover in Xproét. For example, this follows from the observation
that S is quasi-compact, but tSX admits no finite refinement covering S.

Example 1.4.9. More generally, letT be a topological space that is the disjoint union9
T = tTi of profinite sets Ti . Then we associate to T the object T := tTi in Xproét. Its
underlying topological space is |T | = T . We also denote by T the sheaf on Xproét that
it represents. We call this the locally profinite sheaf associated to T . For example, Qp

is a disjoint union of profinite sets, so we can now regard Q
p
as a sheaf on Xproét.

Example 1.4.10. For X = Spa(Cp), any étale cover Y → X is split, hence of the form
tSX → X for some (not necessarily finite) set S. It follows from this that the functor

{(small) disjoint unions of profinite sets} → Spa(Cp)proét

from Example 1.4.9 is an equivalence of categories. It becomes an equivalence of
sites when we endow the left hand side with the topology in which a family ( fi : Si →
T)i∈I is a cover if there is a finite subset J ⊆ I such that T = ∪j∈J fj(Si) and the fj are
open. In particular, the topos of sheaves on the site Spa(Cp)proét is then equivalent to
the topos of sheaves on the category of (small) profinite sets.

This is a good point to mention that Example 1.4.10 is related to Clausen–Scholze’s
theory of “condensed mathematics” [Sch]:

Remark 1.4.11. There is also an algebraic analogue for the pro-étale site, for schemes
instead of adic spaces: Bhatt–Scholze [BS15, §4] have defined a pro-étale site Sproét
for any scheme S. Let us mention what this looks like for a geometric point:

Similarly as in Example 1.4.10, for S =Spec(Cp), the qcqs objects of Spec(Cp)proét
turn out to be identified with profinite sets. But this time, the induced Grothendieck
topology on profinite sets is instead defined by allowing any jointly surjective cov-
ers (i.e. there is no openness condition), see [BS15, Example 4.1.10]. We refer to
[BS15, Remark 4.1.11] for more details on the comparison to Spa(Cp)proét.

Condensed sets in the sense of Clausen–Scholze can now be defined as sheaves
on Spec(Cp)proét. Historically, this was the starting point of condensed mathematics.

9Equivalently, T is a Hausdorff space which is locally profinite and has cohomological
dimension 0, see [Wie69, Theorem 5.1]. We thank the referee for pointing this out.
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1.4.1.2 Étale cohomology via Xproét. Before discussing the connection to perfectoid
spaces, let us also mention right away a very nice application of the pro-étale site: It
can be used to define étale cohomology with Qp-coefficients of a rigid space.

As in algebraic geometry, étale geometry of a rigid space X is usually defined as

Hn
ét(X,Qp) := lim←−−

k∈N
Hn

ét(X,Z/p
kZ)[ 1

p ].

Via Xproét, there is a cleaner way to do this, using the sheaf Q
p
from Example 1.4.9:

Proposition 1.4.12. Let X be a qcqs rigid space. Then there is a natural isomorphism

Hn
ét(X,Qp) = Hn(Xproét,Qp

).

Note that on the left hand side, the cohomology is “just notation”, but on the right
we are really taking sheaf cohomology on a site!

1.4.1.3 Structure sheaves on Xproét. Recall the morphism of sites ν : Xproét → Xét.
This induces a structure sheaf OXproét = ν

∗OXét on Xproét with integral subsheaf O+Xproét
:=

ν∗O+Xét
. As before, we often drop the index −Xproét when the site is clear from context.

Lemma 1.4.13 ([Sch13a, Lemma 3.16]). For C = (Ci)i∈I in Xproét with all Ci qcqs,

O(C) = lim−−→i∈I
O(Ci), O+(C) = lim−−→i∈I

O+(Ci).

This is not immediate from the definition: A priori, ν∗O is the sheafification of
the presheaf described in the lemma. The lemma says that this presheaf is a sheaf.

Example 1.4.14. For T∞ := (. . .
[p]
−−→ Td) in Tdproét, the sheaf O

+ evaluates to

O+(T∞) = lim−−→n∈N
OK 〈T±

1
pn 〉.

This is different from the algebra OK 〈T±
1

p∞ 〉 of functions on the perfectoid space T∞
from Example 1.2.10 and Example 1.3.31.

As this example shows, in order to see perfectoid algebras appearing as algebras of
functions on objects of Xproét, we need to form the sheaf-theoretic p-adic completion

Ô+ := lim←−−k∈N O
+/pk, Ô := Ô+[ 1

p ].

The sheaf Ô on Xproét is a priori difficult to compute explicitly: Already O+/pk shows
unexpected behaviour on rigid spaces, since H1

ét(X,O
+)may be large (Remark 1.3.48).

For example, for any affinoid rigid space X , we have a natural map

O(X) → Ô(X),
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but despite the fact that O+(X) is usually p-adically complete, it’s not at all clear that
this is an isomorphism. In fact, this can fail in general! For example, it will follow
from Remark 1.4.20 below that Ô(X) is always reduced, so any nilpotent elements
of O(X) are in the kernel of the above map. That said, we will later see (in The-
orem 1.4.36, see also §1.4.2.2):

Proposition 1.4.15. Assume that X is a smooth rigid space, then O(X) = Ô(X).

The key to understanding Ô are perfectoid objects in Xproét, as we now discuss.

1.4.1.4 Perfectoid objects in Xproét and perfectoid covers.

Definition 1.4.16. We call an object U = (Ui)i∈I in Xproét affinoid perfectoid if the
Ui = Spa(Ri, R+i ) are affinoid and R+ := (lim−−→i∈I

R+i )∧ is such that R := R+[ 1
p ] is a

perfectoid K-algebra. We call an object perfectoid if it is analytic-locally perfectoid
(here the analytic topology refers to the topological space defined in Definition 1.4.3).

Lemma 1.4.17 ([Sch13a, Lemma 4.10]). In the situation of Definition 1.4.16,

ÔX(U) = R, Ô+X(U) = R+, Ô+X/p(U)
a
= R+/p.

In particular, sending U to Spa(R, R+) glues along rational subspaces, so that we can
associate to any perfectoid object Z in Xproét a natural perfectoid space Ẑ → X .

The crucial property of the pro-étale site is now that it is “locally perfectoid”:
First, a technical lemma ([Sch13a, Lemma 4.5]) using Almost Purity, Theorem 1.2.41,
shows that fibre products of étale maps Z→Y with perfectoid objects C→Y in Xproét
are again perfectoid. By an easy limit argument, one can deduce:

Lemma 1.4.18. Let Y be any perfectoid object of Xproét and let Z → Y be a pro-étale
morphism in Xproét. Then Z is again perfectoid.

We deduce the following key observation:

Proposition 1.4.19. If X is smooth, then perfectoid objects form a basis of Xproét.

Proof. By Lemma 1.4.18, it suffices to see that X has a pro-étale cover by a perfectoid
space. For this we use that any smooth rigid space X can be covered by open subspaces
U that admit an étale morphism U → Td to some torus. We can now form the fibre
product inside of Tdproét

U∞ Td∞

U Td

where Td∞ → Td is the pro-étale perfectoid cover from Example 1.3.31. Then U∞ →
Td∞ is étale. As Td∞ is perfectoid, Lemma 1.4.18 shows that so is U∞.
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Remark 1.4.20. A more involved argument due to Colmez [Col02] shows that Pro-
position 1.4.19 is true without smoothness assumption, see [Sch13a, Proposition 4.8].

Remark 1.4.21. The pro-étale site is related to earlier constructions of Faltings,
namely the theory of the Faltings topos [Fal02]. From this perspective, Scholze’s key
new technical ingredients is the theory of perfectoid spaces.

We note that Td∞ → Td is in fact a Galois cover, in the following sense:

Definition 1.4.22. Let G be a profinite group and let G be the associated sheaf on
Xproét from Example 1.4.8. We say that a morphism f : V → U in Xproét is a Galois
cover with group G if f is a pro-étale cover and there is an action10 m : G × V → V ,
leaving f invariant and making the following diagram Cartesian:

V U

G × V V

f

pr2

m f

Here the bottom map is the projection to the second factor.

Exercise 1.4.23. Show that Td∞ → Td is a Galois cover with group ∆ := Zp(1)d.

We have seen that toric charts are one way to obtain perfectoid pro-étale covers of
rigid spaces. In practice, there are often other ways to find perfectoid covers:

Example 1.4.24. Assume that K is algebraically closed and let A be any abelian
variety over K of good reduction, considered as an adic space over Spa(K, OK ) by
analytification (see §1.10 in [Hüb]). Then [pn] : A→ A is a finite étale Galois cover
with group A[pn]. Let now

A∞ := (· · · → A
[p]
−−→ A) ∈ Aproét.

Then it follows from Example 1.3.35 that A∞ is a perfectoid object of Aproét. In fact,
by taking the limit of the Cartesian diagram expressing that [pn] : A→ A is Galois
in Aproét, we see that A∞ → A is a Galois cover for the profinite group TpA. Here
TpA = lim←−−n∈N A[pn](K) is the Tate module of A. This leads to a p-adic analogue of
Riemann uniformization: We have an isomorphism A = A∞/TpA of sheaves on Aproét.

In fact, all of the above statements still hold for any abelian variety A, not neces-
sarily of good reduction [BGH+22, Theorem 1]. This natural example of a perfectoid
pro-étale cover will again play a role in §1.4.3.

10This means that it is a morphism in Xproét such that the obvious diagrams in Xproét, express-
ing associativity and the trivial effect of the neutral element, commute.
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Example 1.4.25 (Hansen, [BGH+22, Corollary 5.6]). Let K be algebraically closed.
LetC be a smooth projective curve over K of genus ≥ 1, regarded as an adic space. Fix
a point x ∈C(K). Consider the cofiltered inverse systemC∞ of pairs (C ′, x ′) consisting
of a connected finite étale cover C ′ → C together with a fixed lift x ′ ∈ C ′(K) of x.
Then C∞ ∈ Cproét is perfectoid, and C∞ → C is a Galois cover with group πét

1 (C, x).

1.4.1.5 Pro-étale cohomology. The crucial point for our applications is now that
in line with Theorem 1.3.47, affinoid perfectoid objects have good cohomological
properties. Namely, we have the following pro-étale variant of Almost Acyclity:

Theorem 1.4.26 (Almost Acyclity). For any affinoid perfectoid object U in Xproét,

Hn
proét(U, Ô

+
X)

a
= 0 for all n ≥ 1.

Proof sketch: Let Û be the affinoid perfectoid space associated to U. One first shows

Hn
proét(U, Ô

+/pn) = Hn
proét(U,O

+/pn) = Hn
ét(Û,O

+/pn).

By Theorem 1.3.47, this is a
= 0. The result then follows by a limit argument. See

[Sch13a, Lemma 4.10] for details.

1.4.2 Aside: Other locally perfectoid topologies

1.4.2.1 The v-topology. Over the past years, the pro-étale site has proved to be very
useful. But for some applications, it turns out that it is still not fine enough. For
example, in this note we have defined Xproét only for rigid spaces. It is straightforward
to extend the definition to locally Noetherian adic spaces, but these days (not least
because of perfectoid geometry) we often wish to avoid Noetherian hypotheses.

In the meantime, Scholze has introduced in [SW20][Sch18] several finer topolo-
gies on analytic adic spaces. The most important one among these is probably the
v-topology:

Definition 1.4.27. Let X be any adic space over K . The v-site Xv is defined as follows:
(1) The objects are the morphisms f : T → X from perfectoid spaces T over K .
(2) The morphisms are the morphisms of perfectoid spaces over X .
(3) The covers are the families ( fi : Si → T)i∈I such that for any quasi-compact

U ⊆ T , there is a finite subset J ⊆ I and quasi-compact open subspacesVj ⊆ Sj

for each j ∈ J such that |U | = ∪j∈J fj(|Vj |).

If X is a rigid space (or more generally, a locally Noetherian adic space) over Qp,
there is a morphism of topoi

X∼v → X∼proét.
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The point is that perfectoid objects of Xproét form a basis for the topology by Propos-
ition 1.4.19, so any sheaf on Xproét is determined by its values on perfectoid objects.
Thus we might just as well restrict the category of test objects to perfectoid spaces!
This is the philosophy that is fully embraced by the v-site.

Assumpton (3) is analogous to the “qc” part of the “fpqc” topology, which is
usually the finest topology that appears in algebraic geometry. But in the definition of
the v-topology, there is no analogue of the faithfully flat assumption, i.e. of the “fp”.
In fact, there are no assumptions whatsoever on the morphism f . So it might first
seem completely unreasonable that this has good properties. But in fact this works
out very well! For example, for any affinoid perfectoid f : T = Spa(R, R+) → X ,

Hn
v (T,O+)

a
=

{
R+ n = 0,
0 n > 0.

This is a very, very strong form of Almost Acyclicity!

Remark 1.4.28. One can also endow the category of perfectoid spaces over K with
a pro-étale topology, leading to a “big pro-étale” site of X whose topos is in between
those of Xét and Xv . Second, in [Sch18] there is also a different kind of small “pro-
étale” site which is finer than Xproét. So one sometimes has to be a careful which
pro-étale site people refer to. But often the difference does not matter in practice.

1.4.2.2 A glimpse on diamonds. Scholze uses the v-topology to define the category
of diamonds, which extremely vaguely speaking (and simplifying a bit) is a very large
category of sheaves on Spa(K)v that is small enough that one can “do geometry” with
them. They were introduced in [SW20] and developed systematically in [Sch18].

Slightly less vaguely, a diamond is a v-sheaf Y that admits a “pro-étale cover”
11X → Y by a perfectoid space X . Since pro-étale covers of perfectoid spaces are
perfectoid, every v-sheaf X ×Y · · · ×Y X appearing in the Čech nerve of X → Y is
again represented by a perfectoid space. In practice, one often needs an additional
topological condition on Y (a bit similar to a qcqs assumption) which leads to the
notion of locally spatial diamonds. There is then a functor X 7→ X♦ from analytic
adic spaces over K into locally spatial diamonds over K . Any locally spatial diamond
has an étale site, which for X♦ recovers the étale site of the adic space X . In this sense,
diamonds are a huge enlargement of the category of analytic adic spaces over Zp.

A vague analogy for this diamantine perspective may be that any analytic adic
space over Zp can be reconstructed12 from perfectoid charts and gluing data between

11It is not immediately clear how to define pro-étale covers of v-sheaves. In fact, the correct
technical notion is that of a “‘quasi-pro-étale cover”.

12Precisely how much mathematical structure can be reconstructed depends on how well-
behaved the adic space is. For example, perfectoid spaces are always reduced and therefore



Perfectoid Spaces 51

them, much in the same way that real manifolds are built out of pieces of Rn with glu-
ing data between them. In fact, technically speaking, a closer analogy is that diamonds
relate to perfectoid spaces like compact Hausdorff spaces relate to profinite sets: Any
compact Hausdorff space T admits a surjection by a profinite set S → T such that
every space S ×T · · · ×T S in the Čech nerve is again profinite. Hence T is uniquely
determined by the presheaf on the category of profinite sets which it represents. We
refer to [Sch18, Example 11.12] for more details on this story.

Following the philosophy suggested by these analogies, perfectoid spaces have
thus become the fundamental building blocks of our p-adic geometric world!

1.4.3 p-adic Hodge theory

While perfectoid spaces themselves are a revolutionary new concept, many ideas sur-
rounding them have their roots in the much older field of p-adic Hodge theory due
to Tate, Fontaine, Faltings, ... This is where instances of many related constructions
first appeared, including perfectoid fields, Fontaine’s θ-map, the first instance of the
tilting construction, almost mathematics, the predecessor of almost purity...

It is therefore not surprising that one of the areas that perfectoid spaces have
revolutionised in the past decade is p-adic Hodge theory: They have been used not
only to reorganise known results, but they have moreover lead to many completely
new concepts like the pro-étale site, Ainf-cohomology, or prismatic cohomology,
which have been used to prove long-standing open problems in the field. Let us men-
tion just a few concrete applications to give some examples:

(1) the extension of the Hodge–Tate and de Rham comparison isomorphisms to
smooth proper rigid varieties [Sch13b, §3][BMS18, Theorem 1.7], which had
already been suggested by Tate [Tat67, p.180]);

(2) various new results on the cohomology of Shimura varieties due to Scholze
[Sch15], Pan [Pan22], Rodríguez Camargo [RC22], ..., leading for example to
a proof of the rational Calegari–Emerton conjecture [RC22, Theorem 1.1.2];

(3) the prismatic Dieudonné theory of Anschütz–Le-Bras [ALB23] which classi-
fies p-divisible groups over a very general class of base rings;

(4) the relation of p-adic Hodge theory to K-theory furnished by [BMS19], which
has been applied by Antieau–Krause–Nikolaus [AKN24] to compute new
K-groups, for example of rings like Z/pnZ.

cannot tell a rigid space from its reduction. By Theorems of Kedlaya–Liu and Scholze, there is
a fully faithful functor from seminormal rigid spaces over K into diamonds over K , but for any
rigid space that’s not seminormal, one can’t reconstruct the structure sheaf. Seminormality is a
very weak regularity criterion though, for example it’s weaker than being normal.
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As an introductory and hopefully enlightening example for the way that perfectoid
spaces help us understand p-adic Hodge theory, we shall now briefly discuss one of
these applications, namely the Hodge–Tate comparison. For this we follow Scholze’s
articles [Sch13a, §4-§5] and [Sch13b, §3]. Let us mention for further reading that a
great (and more detailed) exposition of the results discussed in this section is given in
[CBC+19].

We start with some general background on p-adic Hodge theory: Generally speak-
ing, this area is concerned with comparing different p-adic cohomology theories.

1.4.3.1 The complex Hodge decomposition. By way of motivation, let us start in
complex geometry, and let X be a complex compact Kähler manifold. Four our pur-
poses, you won’t miss out on anything important if you just take X to be a complex
torus, or in fact you may simply take X to be an elliptic curve over C.

Complex Hodge theory says that there is then a canonical decomposition

Hn
sing(X,C) =

⊕
i+j=n

Hi(X,Ωj
X) (1.5)

comparing singular cohomology (left hand side) to Hodge cohomology (right hand
side). Here Ω1

X is the vector bundle of holomorphic differentials and Ωj
X := ∧jΩ1

X .
More algebraically, ifY is a smooth projective variety over C, then the analytifica-

tion X = Y (C) is a compact Kähler manifold. The sheaf Ωj
X is then the analytification

of the algebraic vector bundle of Kähler differentialsΩj
Y . The left hand side of (1.5) is

then related to étale cohomology via Artin’s Comparison Theorem, which identifies
singular cohomology with étale cohomology for torsion coefficients.

1.4.3.2 The Hodge–Tate spectral sequence. Moving on to the p-adic situation, let
us for simplicity13 work over the perfectoid field Cp, the completion of an algebraic
closure of Qp. There is then an analogue of the Hodge decomposition (1.5) over Cp:

In order to formulate this, we first note that the analogue of a compact complex
manifold is a proper smooth rigid space X over Cp. For example, you can take X to
be the adic analytification of a proper smooth algebraic variety over Cp. In fact, if you
wish, you could simply take the rigid analytification of an elliptic curve, for which the
discussion will already be meaningful and interesting.

Motivated by the Artin Comparison Theorem and (1.5), the analogue of the left
hand side of the Hodge decomposition in p-adic geometry should be given by the
étale cohomology14

H∗ét(X,Cp) := H∗ét(X,Qp) ⊗Qp Cp .

13The crucial point being that Cp is algebraically closed. More generally, we could replace
Cp by any complete algebraically closed non-archimedean field extension C of Qp .

14The right hand side is the correct definition if you work with more general complete algeb-
raically closed fields C.
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Remark 1.4.29. Recall that we defined H∗ét(X,Qp) in §1.4.1.5. In line with Proposi-
tion 1.4.12, we could equivalently define H∗ét(X,Cp) as H∗proét(X,Cp) where Cp is the
pro-étale sheaf from Example 1.4.9, justifying the notation on the left hand side.

On the other side of the Hodge decomposition, Hodge cohomology can be defined
for X in exactly the same way as in algebraic geometry, using the sheaf of continuous
Kähler differentials Ωj

X that one can define for any adic space over K .
We can now compare these two cohomology theories as follows:

Theorem 1.4.30 (Hodge–Tate comparison). Let X be a smooth proper rigid space
over Cp. Then there is a first quadrant spectral sequence

E i j
2 = Hi(X,Ωj

X(− j)) ⇒ Hi+j
ét (X,Cp), (1.6)

which is functorial in X . It degenerates at the E2-page.

Remark 1.4.31. The (− j) is a Tate twist, defined by tensoring with the Zp-module

Zp(− j) := HomZp (Tpµp∞(Cp),Zp)⊗ j

which is finite free of rank 1. You can safely ignore it if you have not encountered this
before: One can always fix a system of p-power unit roots (ζpn )n∈N to trivialise any
Tate twists, i.e. choose an isomorphism Ω

j
X(− j) � Ωj

X and thus forget about the (− j)
in the following. The reason it is usually included is that it is important to keep track
of it in the case that X admits a model over a local field endowing both sides with a
natural Galois action. In this case, the (− j) tells you that the Galois action needs to be
twisted. In particular, this is relevant for explaning the naturality of the Hodge–Tate
spectral sequence in X (i.e. to explain the word “functorial”).

Remark 1.4.32. Theorem 1.4.30 has a long history with contributions by many math-
ematicians: It was first proved by Tate for abelian varieties with good reduction over
p-adic fields in [Tat67], and conjectured in general. This is also the reason why it was
given the name “Hodge–Tate”. Faltings [Fal88, III Theorem 4.1][Fal02] and Tsuji
[Tsu99] proved it in the algebraic case (namely when X is the analytification of the
base-change to Cp of a smooth proper variety defined over a finite extension of Qp).

In [Sch13a, Sch13b], Scholze gave a new approach which settles the rigid case.
The degeneration at E2 is in general a difficult additional statement, and is the most
recent part of the Theorem: It was proved in general in [BMS18, Theorem 13.3.(ii)].

Remark 1.4.33. If you’re not a fan of spectral sequences, there are two ways in which
you can avoid them in this context while still getting an interesting statement:

(1) First, you could focus on the part where i + j = 1, in which case saying
the magic words “5-term exact sequence of low degrees” extracts from The-
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orem 1.4.30 a short exact sequence of Cp-vector spaces

0→ H1(X,O) → H1
ét(X,Cp) → H0(X,Ω1

X(−1)) → 0. (1.7)

The “degeneration” part of the statement tells you that this is a short exact.
This illustrates the difference between a decomposition and a degenerated
spectral sequence: In (1.5), we get in cohomological degree 1 a decomposition

H1
sing(X,C) = H1(X,O) ⊕ H0(X,Ω1

X).

In the p-adic world, we could choose a splitting of the exact sequence to also
get such a decomposition, but then the decomposition is in general not canon-
ical! In particular, it is in general difficult to say in which way it’s functorial.
The short exact sequence (1.7) is already very interesting. For example, by
Kiehl’s Theorem, the two outer terms are finite dimensionalCp-vector spaces.
Thus, for a short exact sequence like (1.7) to exist, it is necessary that H1

ét(X,Cp)
is finite dimensional. But a priori this is not at all obvious!15

(2) Second, there is the following variant: If X comes via base-change from a
local field L |Qp, then there actually is a canonical splitting for every n ∈ N

Hn
ét(X,Cp) =

⊕
i+j=n

Hi(X,Ωj
X(− j)).

Tate proves this using Galois cohomology, so this canonical decomposition is
an “arithmetic” phenomenon. Here the Tate twist (− j) is really crucial.
More generally, such a decomposition is induced by the datum of a lift of X
from Cp to the square-zero extension θ : (W(OC[p )/(ker θ)2)[ 1

p ] → Cp.

Remark 1.4.34. Note that both sides of (1.6), as well as the terms of (1.7), are algeb-
raic (in the sense that, if X is the analytification of a smooth proper scheme over K ,
then they are already defined for the scheme), but we think of the isomorphism itself
as being analytic or “transcendental” rather than algebraic. In particular, even if both
sides are already defined over Q, the sequence (1.7) is typically not.

Remark 1.4.35. Comparing Theorem 1.4.30 to the complex decomposition (1.5),
you might wonder: What happened to the Kähler condition when we switched from
C to Cp? Answer: It disappeared! Apparently, there is no analogue of the Kähler
condition in p-adic geometry, at least not in this context. Maybe one can think of
this as a trade-off compared to the complex Hodge decomposition: We win greater
generality, but on the other hand we only get a degenerated spectral sequence, not a
decomposition (unless e.g. you are in the arithmetic situation of Remark 1.4.33.2).

The final goal of these lectures is to sketch Scholze’s proof of Theorem 1.4.30.

15In fact, proving finiteness of Hn
ét(X,Cp) is the first main step in [Sch13a], and it is used in

the proof of Theorem 1.4.30, more precisely in the proof of Theorem 1.4.44 below.
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1.4.4 The Leray spectral sequence

Building on the work of Faltings, Scholze’s idea is to realise the Hodge–Tate spectral
sequence in Theorem 1.4.30 as the Leray spectral sequence for the morphism of sites

ν : Xproét → Xét

and the sheaf ÔX . This Leray spectral sequence is a priori of the form

Hi(X, R jν∗ÔX) ⇒ Hi+j
proét(X, ÔX). (1.8)

To see that this has the desired form, we need to identify the left hand side with Hodge
cohomology and the right hand side with étale cohomology.

The identification with Hodge cohomology works by the following key result:

Theorem 1.4.36. Let j ≥ 0. Then there is a canonical and functorial isomorphism

R jν∗ÔX = Ω
j
X(− j).

This is quite an amazing result. Note that already the case of j = 0 says that ν∗Ô =
O, which is non-trivial, and in fact will give a proof of our earlier Proposition 1.4.15.

Proof. We give a sketch of how Theorem 1.4.36 is proved. There are two main steps:

Step 1. We first show that R jν∗Ô is finite locally free and that the natural map∧j R1ν∗Ô → R jν∗Ô

induced from the cup product in cohomology is an isomorphism. Since
∧j

Ω1
X = Ω

j
X

by definition, this will reduce us to identifying the vector bundle R1ν∗Ô.
The key idea for the proof of this first step is to use perfectoid covers:

1.4.4.1 Computing pro-étale cohomology, Cartan–Leray style. The statement of
Theorem 1.4.36 is local. Since X is smooth, we may therefore without loss of gener-
ality assume that X = Spa(R, R+) is affinoid and admits an étale morphism to a torus
X → Td which is a composition of a rational open immersion with a finite étale map.
Recall from Example 1.3.31 and Exercise 1.4.23 that there is a perfectoid pro-étale
Galois cover Td∞ → Td with group ∆ := Zp(1)d. By pullback, we get a diagram

X∞ Td∞

X Td .

The following is slightly stronger than what we used in Proposition 1.4.19:
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Exercise 1.4.37. Show that X∞ is an affinoid perfectoid object of Xproét, and X∞→ X
is a pro-finite-étale Galois cover with group ∆ := Zp(1)d.

Write X∞ = Spa(R∞, R+∞). The key computation is now:

Proposition 1.4.38. There is a natural isomorphism of R-modules

Hn
proét(X, ÔX)

∼−→ Hn
cts(∆, R) = ∧nR(−1)d .

Proof. This is essentially an application of the “Cartan–Leray spectral sequence”:

Lemma 1.4.39 (Cartan–Leray). Let X∞→ X be an affinoid perfectoid object in Xproét
that is a Galois cover with pro-finite Galois group G. Then

Hn
proét(X, Ô) = Hn

cts(G, Ô(X∞))

Proof. That X∞ → X is a Galois cover means by Definition 1.4.22 that

X∞ ×X X∞ = G ×Spa(K) X∞

where G is the pro-finite-étale object of Xproét defined in Example 1.4.8. Using Pro-
position 1.3.39, we deduce from that this that X∞ ×X X∞ is again affinoid perfectoid.
Similarly for the higher fibre products of X∞ over X . We can therefore invoke the
pro-étale version of Almost Acyclicity, Theorem 1.4.26, to see that Ô is acyclic on
the Čech nerve of X∞ → X . By the Čech-to-sheaf spectral sequence in Xproét, we
therefore have

Hn
proét(X, Ô) = Ȟn({X∞ → X}, Ô).

Second, we have the following:

Exercise 1.4.40. Let R∞ := Ô(X∞). Use the explicit formula for the fibre product in
the proof of Proposition 1.3.39 to show that there is a canonical identification

Ô(X∞ ×X X∞) = Ô(G × X∞) = Mapcts(G, Ô(X∞)).

The same still works for the higher fibre products. It follows that the Čech nerve
of Ô on X∞→ X can be canonically identified with the continuous bar complex of G
on Ô(X∞), which computes continuous group cohomology. Consequently, we have

Ȟn
ét({X∞ → X}, Ô) = Hn

cts(G, Ô(X∞)).

Returning to the proof of Proposition 1.4.38, we are left to compute Hn
cts(G, Ô(X∞)).

This is now a fairly standard computation (see [Sch13a, Lemma 5.5] for details). It is
deduced by base-change arguments from the following computation:
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Exercise 1.4.41 (A bit more challenging16). Let X = T1 so that R∞ := O(X∞) =
Cp 〈T±1/p∞〉 and ∆ := Zp(1) � Zp. Show that in this case, the map

R→ H1
cts(∆, R∞)

is an isomorphism. Hint: first consider the map R+/pn→ H1
cts(∆, R+∞/pn) and use that

OCp 〈T±1/p∞〉/pn =
⊕

m∈Z[ 1
p ]≥0
(OCp/pn) · Tm

as an OCp -linear∆-module. Describe the∆-action on each factor and its∆-cohomology.
Then apply lim←−−n and invert p. If you’re stuck, consult [Sch13a, Lemma 5.5].

A computation similar to Exercise 1.4.41 shows that for X = Td, the map

∧nRRd = Hn
cts(∆, R) → Hn

cts(∆, R∞)

is an isomorphism, as we wanted to see. In particular, R1ν∗Ô is a vector bundle.
The identification R1ν∗Ô = Ω1

X(−1) requires further technical input which is out-
side the scope of these lectures. We give a brief sketch: Following [CBC+19], there
is an elegant way to do this via the theory of the derived p-completed cotangent com-
plex L̂. The basic idea is to work on Xproét and consider for any affinoid perfectoid
U ∈ Xproét the transitivity triangle of the composition

Zp → OCp → Ô+X(U).

Using that Ô+X(U)a is a perfectoid Oa
Cp

-algebra, one shows that L̂Ô+X (U) |OCp
a
= 0, and

it follows that
L̂Ô+X (U) |Zp

a
= L̂OCp |Zp ⊗ Ô

+
X(U).

From results of Tate and Fontaine, it is known that LOCp |Zp [
1
p ] = Cp(1)[1]. On the

other hand, there is a natural identificationΩ1
X = L̂OX |OCp [

1
p ] on Xét. Putting everything

together, we obtain the desired map on Xproét

ν∗Ω1
X → ν∗ L̂OX |OCp [

1
p ] → L̂ÔX |OCp

[ 1
p ] → ÔX(1)[1]

Forming the pushforward along ν : Xproét → Xét, we get a natural morphism

Ω
1
X → R1ν∗ÔX(1)

which gives the desired morphism by twisting with Zp(−1).

16But the kind of computation that you may find enlightening when you work it out yourself.
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This finishes the proof of Theorem 1.4.36. For readers who would like to get some
practice with the ideas introduced in the proof, we offer the following exercise:

Exercise 1.4.42 (Even more challenging). Show that H2
ét(T

1, O+) has unbounded
p-torsion, by following the sketch below:

(1) Use a long exact sequence to reduce to computing H1
ét(T

1, O/O+). For this
you may use that Hi

ét(T
1,O) = 0 for i ≥ 1 (see [FvdP04, Proposition 8.2.3]).

(2) Convince yourself that Lemma 1.4.39 also holds with Ô replaced by O/O+.
(3) Use Lemma 1.4.17 and the pro-étale cover T1

∞→T1 to see that H1
ét(T

1,O/O+)=
H1

proét(T
1,O/O+). (This holds more generally, see [Sch13a, Corollary 3.17.(i)].)

(4) Use an integral version of Exercise 1.4.41 to show that there is a natural map
O+(R+) → H1

proét(T
1,O+) whose cokernel is killed by p.

(5) Deduce: H1
proét(T

1,O/O+)=H1
proét(T

1,O+) ⊗Qp/Zp has unbounded p-torsion.
Using additionally [Sch13a, Lemma 4.5], one can show in the same way that also
H2

ét(B
1,O+) has unbounded p-torsion. This was mentioned in Remark 1.3.48.

1.4.4.2 Aside: Relation to Galois cohomology. Computations resembling the one
in this subsection have played a role in p-adic Hodge theory long before perfectoid
spaces where introduced. But even for these older computations, the pro-étale site
often gives a nice new geometric perspective that helps understand conceptually what
is going on. For example, in Tate’s article [Tat67] on the Hodge–Tate comparison for
abelian varieties, there is a computation of the Galois cohomology of H1

cts(GQp,Cp)
which in this newer language can be interpreted as follows:

Let L ⊆ Cp be any finite extension of Qp. Then X = Spa(L,OL) is a rigid space.

Exercise 1.4.43. Show that we can regard Spa(Cp, OCp ) as a perfectoid object in
Spa(Cp, OCp )proét, namely as the limit Û of the cofiltered inverse system U of the
finite subextensions L ⊆ L ′ ⊆ Cp.

By a common abuse of notation, let us ignore the difference between Û and the
inverse system U, then we can regard Spa(Cp,OCp ) → Spa(L,OL) as a Galois cover
with group GL := Gal(L |L) in the sense of Definition 1.4.22. We can now again use
the Cartan–Leray spectral sequence, Lemma 1.4.39, and compute that

H1
proét(Spa(L), Ô) = H1

cts(GL,Cp).

On the other hand, we know from lecture 1 that there are much smaller perfectoid
Galois covers of L: Namely, assume for simplicity that ζp ∈ L and let Lcyc |L be the
compositum ofQcyc

p |Qp and L |Qp, then Spa(Lcyc) → Spa(L), is an affinoid perfectoid
Galois cover with group Zp. Again by Lemma 1.4.39, we thus have

H1
proét(Spa(L), Ô) = H1

cts(Zp, Lcyc).
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By a direct calculation, Tate shows that the right hand side is = L. All in all, this
shows that

H1
cts(GL,Cp) = L.

Note that this also shows that H1
proét(Spa(L), Ô) = L, which underlines how spe-

cial it is that Ô is acyclic on perfectoid spaces: Indeed, more generally speaking, for
any non-archimedean field K over Qp, sheaf cohomology of Spa(K)proét is essen-
tially the same as Galois cohomology of K , and the translation is given by consid-
ering the pro-étale Galois cover Spa(C) → Spa(K) with group GK , where C is the
completion of an algebraic closure of K . Both perspectives have advantages: For
example, sheaf cohomology on Spa(K)proét is defined by an actual derived functor,
while Galois cohomology is not, being defined rather explicitly via the bar complex.
On the other hand, in practice one can often use the concrete definition of continuous
group cohomology in order to actually compute sheaf cohomology “by hand”.

1.4.5 Step 2: The Primitive Comparison Theorem

Given Theorem 1.4.36, the Leray spectral sequence (1.8) for ν : Xproét→ Xét now has
the form

Hi
ét(X,Ω

j
X(− j)) ⇒ Hi+j

proét(X, Ô).

In order to deduce Theorem 1.4.30, we are left to identify Hi+j
proét(X, Ô) with étale

cohomology. Scholze’s second step is therefore to prove the following comparison
result, which he calls the “Primitive Comparison Theorem”:

Theorem 1.4.44 ([Sch13a, Theorem 5.1]). Let X be any smooth proper rigid space
over Cp. Then the following natural map is an isomorphism:

Hn
ét(X,Cp)

∼−→ Hn
proét(X, Ô)

A related result had previously been proved by Faltings [Fal02, §3, Theorem 8].
The proof is quite difficult, and ultimately relies on a tilting argument which reduces
to a statement in characteristic p about the Artin–Schreier sequence (believe it or not).

1.4.5.1 The case of abelian varieties. The proof of Theorem 1.4.44 is well beyond
the scope of these lectures. Apart from the above extremely short summary, we sketch
a proof of it in the special case when X is an abelian variety of good reduction. This
is accessible with the methods we have already developed. Once again, this follows
an idea due to Bhargav Bhatt from his Arizona Winter School lectures in [CBC+19].

Remark 1.4.45. The case of abelian varieties of Theorem 1.4.30 has itself a long
and influential history: As we already mentioned, the first instance was proved by
Tate [Tat67, Remark on p180] for abelian varieties of good reduction over a discrete
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valuation ring and it let him to ask if (1.7) holds more generally. The good reduction
assumption was subsequently removed by Raynaud based on the theory of semistable
reduction. Fontaine gave a different proof in [Fon82, Théorème 2] via a “p-adic integ-
ration map”, a perspective that was further developed by Coleman [Col84].

Let X = A be an abelian variety over Cp of good reduction, considered as an adic
space. Recall from Example 1.4.24 the p-adic universal cover

A∞ = lim←−−[p] A→ A

in Aproét. The name originates from the theory of p-divisible groups [SW13], but in
fact A∞ does behave quite a bit like a topological universal cover! Namely, we have the
following weaker analogue of the topological universal cover being simply connected:

Proposition 1.4.46 ([CBC+19, Bhatt, Proposition 2.1.1]).

(1) Hn
proét(A∞, Ô)

a
=

{
Cp n = 0,
0 n > 0,

(2) Hn
proét(A∞,Cp)

a
=

{
Cp n = 0,
0 n > 0.

Remark 1.4.47. This is still true without the good reduction hypothesis on A, see
[Heu21, Proposition 4.2]. However, the proof in the given reference uses the Primitive
Comparison Theorem, so it would be cyclical to use this to prove Theorem 1.4.44.
That being said, there is an alternative way to prove Proposition 1.4.46 for general A
without good reduction assumption, so with a little bit more work the good reduction
assumption can be removed while still following the same line of argument.

By a similar argument as in Lemma 1.4.39, it follows that Hn
proét(A, Ô) can be

computed via the Cartan–Leray spectral sequence. Applying this to Ô yields

Hn
proét(A, Ô) =Hn

cts(TpA,Cp),

By Proposition 1.4.46.(2), there is an analogous Cartan–Leray sequence for Cp:

Hn
proét(A,Cp) =Hn

cts(TpA,Cp).

Comparing the two gives the desired isomorphism.
This finishes the proof of Theorem 1.4.30 for abelian varieties of good reduction.
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