
DIAMANTINE PICARD FUNCTORS OF RIGID SPACES

Abstract. For a connected smooth proper rigid space X over a perfectoid field extension

of Qp, we show that the étale Picard functor of X♦ defined on perfectoid test objects is

the diamondification of the rigid analytic Picard functor. In particular, it is represented
by a rigid analytic group variety if and only if the rigid analytic Picard functor is.

Second, we study the v-Picard functor that parametrises line bundles in the finer

v-topology on the diamond associated to X and relate this to the rigid analytic Picard
functor by a geometrisation of the multiplicative Hodge–Tate sequence.

The motivation is an application to the p-adic Simpson correspondence, namely our
results pave the way towards the first instance of a new moduli theoretic perspective.

1. Introduction

Line bundles are ubiquitous in rigid analytic geometry, and Picard groups of rigid spaces
have therefore been the subject of extensive studies, for example in [9, 2, 10, 4, 26, 22, 24].
It is natural to ask how much of this theory carries over to Scholze’s larger categories like
the pro-étale site [30] or the category of diamonds [32]. One particular question with a
long history in rigid geometry is about the existence of rigid analytic moduli spaces of line
bundles on proper rigid spaces, namely about representability of the rigid Picard functor
which parametrises isomorphism classes of line bundles:

Let p be a prime, let K be a perfectoid extension of Qp and let π : X → Spa(K) be a
smooth proper rigid space considered as an adic space. The rigid Picard functor is the sheaf

PicX,ét := R1πét∗Gm : SmRigK,ét → Ab

where SmRigK,ét is the big étale site of smooth rigid spaces over K and πét∗ is the pushfor-
ward of big étale sites along π. Explicitly, PicX,ét is the sheafification of the functor sending
a smooth rigid space Y to the group of isomorphism classes of line bundles on X × Y . It is
expected that PicX,ét is always representable, and this is known in many cases of interest:

1. If X is the analytification of a smooth proper algebraic variety X0, then it follows
from Köpf’s relative rigid GAGA-Theorem [23][25, Theorem 2.8][4, Example 3.2.6]
that PicX,ét is the analytification of the algebraic Picard variety of X0 [2, §1]. In

particular, the identity component Pic0
X,ét is then an abelian variety.

2. In [3, §6], Bosch–Lütkebohmert treated the case that X is an abeloid variety, i.e.
a connected smooth proper rigid group variety: Pic0

X,ét is then the dual abeloid
variety.

3. Hartl–Lütkebohmert [10] proved that if X has a strict semi-stable formal model
over a discrete valuation ring, then PicX,ét is represented by a rigid group such that

Pic0
X,ét is semi-abeloid, i.e. an extension of an abeloid variety by a torus.

4. Warner has announced in his thesis [36] a proof that PicX,ét is always representable,

but he does not describe what Pic0
X,ét looks like in general.

1.1. The étale diamantine Picard functor. The goal of this article is to study Picard
functors that are instead defined on perfectoid spaces as defined by Scholze [29]. Viewing
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rigid spaces through perfectoid spaces naturally leads us into the setting of diamonds in-
troduced in [32]: Let PerfK,ét be the site of perfectoid spaces over X equipped with the
étale topology, and PerfK,v the same category with the much finer v-topology from [32, §8].
Associated to X we have the diamondification

π♦ : X♦ → Spd(K)

defined in [32, §15]. This is a morphism of diamonds, and thus of sheaves on PerfK,v.
Analogously to the rigid case, we define the étale diamantine Picard functor to be the sheaf

Pic♦X,ét := R1π♦ét∗Gm : PerfK,ét → Ab.

Explicitly, this is the étale sheafification of the functor that sends a perfectoid space Y over
K to the set of isomorphism classes of line bundles on the analytic adic space X × Y .

The first main result of this article is that this new diamantine Picard functor Pic♦X,ét

can be described in terms of the rigid analytic Picard functor PicX,ét. For this introduction,
let us for simplicity assume that PicX,ét is represented by a rigid space. Then we show:

Theorem 1.1. There is a natural isomorphism of sheaves on PerfK,ét

(PicX,ét)
♦ ∼−→ Pic♦X,ét,

that is, Pic♦X,ét is represented by the diamondification of the rigid analytic Picard functor.

Corollary 1.2. If X is connected and x ∈ X(K) is a point, then for any perfectoid space T
over K, the isomorphism classes of line bundles on X × T that are trivial over x× T are in
natural one-to-one correspondence with the morphisms of adic spaces T → PicX,ét over K.

In fact, we define more generally a natural “diamondification of functors on SmRigK,ét”
such that the statement of Theorem 1.1 holds without requiring PicX,ét to be representable:
Explicitly, the result then says that for every perfectoid space T and any line bundle L on
X × T , one can étale-locally on T find a rigid space T0 and a morphism T → T0 such that
L descends to X × T0. This statement is not at all obvious, and it is false in general if we
remove the assumption that X is proper.

1.2. The v-Picard functor. In the diamantine setting, there is now also a second natural
Picard functor

Pic♦X,v := R1π♦v∗Gm : PerfK,v → Ab,

given by the v-sheafification of the functor that sends Y to the sheaf of isomorphism classes
of v-line bundles on X ×Y . This difference in topology is more than just a technicality: We
showed in [14, Theorem 1.3.2a] that there are in general many more v-line bundles on X
than étale line bundles. In fact, we showed that if K is algebraically closed, the respective
Picard groups of isomorphism classes fit into a “multiplicative Hodge–Tate sequence”:

0→ Picét(X)→ Picv(X)→ H0(X, Ω̃1)→ 0

where Ω̃1 := Ω1{−1} is a Tate twist. Our second main result is that this short exact sequence
can be geometrised to give a comparison between the étale and v-topological Picard functors:

Theorem 1.3. Let X be a smooth proper rigid space over a perfectoid extension K of Qp.
Then the v-Picard functor fits into a natural exact sequence of abelian sheaves on PerfK,ét

0→ Pic♦X,ét → Pic♦X,v → H0(X, Ω̃1
X)⊗K Ga → 0.

In particular, Pic♦X,v is represented by a rigid group variety if and only if PicX,ét is.
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One consequence is that Pic♦X,ét is in fact a v-sheaf, so we can regard Pic♦X,ét as an
extension of PicX,ét to a much larger class of test objects. Conversely, we show that if

Pic♦X,ét is represented by a rigid group, then this also represents PicX,ét. As we explain in
more detail below, this might open up new methods to study PicX,ét and its representability.

1.3. Applications to non-abelian p-adic Hodge theory. Theorem 1.1 and Theorem 1.3
are of interest in their own right, but our main motivation for studying diamantine Picard
varieties is an application to the p-adic Simpson correspondence:

The reason why perfectoid test objects appear naturally in this context is that in [13] we
describe a class of “topological torsion” line bundles L on X characterised by the property

that L extends to a line bundle on the adic space X × Ẑ such that the specialisation of L at

n ∈ Z ⊆ Ẑ is isomorphic to Ln. We would like these to be precisely those line bundles which

induce a homomorphism of adic groups Ẑ→ PicX . This is guaranteed by Theorem 1.1.

While this was our original motivation to study diamantine Picard functors, Theorem 1.3
exhibits a much deeper connection, namely it paves the way for a new understanding of the
p-adic Simpson correspondence as a geometric comparison of moduli spaces: The short exact
sequence in Theorem 1.3 gives a geometrisation of the equivalence between v-line bundles and
Higgs line bundles of [14, §5]. Geometrically speaking, it says that there is a rigid analytic

moduli space of v-line bundles Pic♦X,v which is a Pic♦X,ét-torsor over A := H0(X, Ω̃1
X)⊗KGa

in a natural way. As the same is true for the moduli space Higgs1 := Pic♦X,ét ×A of Higgs

line bundles, we find that Pic♦X,v is an étale twist of Higgs1 over A. As we explain in detail

in the sequel [13], this leads to a geometric non-abelian Hodge correspondence in rank one.
The present article is therefore the first in a series on the geometrisation of the p-adic

Simpson correspondence. Indeed, in [18], we will show that when X is a curve, the per-
spective that the moduli space of v-vector bundles is a twist of the moduli space of Higgs
bundles generalises to objects of higher rank.

1.4. The topological torsion Picard functor is representable. Given the known re-
sults about representability of the rigid Picard functor which we summarised above, it seems
plausible that PicX,ét is always representable by a rigid group variety whose identity com-
ponent is a semi-abeloid variety.

In order to illustrate how the perfectoid perspective can help understand the structure
of Picard functors, let us already mention the following result from the sequel article [13],
saying that a topological torsion version of the rigid Picard functor is always representable:

Let Ĝm be the subgroup of topologically p-torsion units, given by the open disc at 1 of
radius 1. We then define the topologically p-torsion Picard functor of X to be

P̂icX,ét := R1πét∗Ĝm : SmRigK,ét → Ab

Using a geometric p-adic Simpson correspondence in terms of Pic♦X,ét, we prove in [13] that

P̂icX,ét is always representable by a finite disjoint union of analytic p-divisible groups in the

sense of Fargues [6, §1.6]. As such, it is a subgroup of Hom(π1(X), Ĝm) where π1(X) is the
étale fundamental group of X. If PicX,ét is represented by a rigid group G, then this is the
topological p-torsion subgroup of G as defined by Fargues [6, §1.6].

This produces some evidence that PicX,ét is always representable by a rigid group whose
connected component is a semi-abeloid variety: Namely, it imposes restrictions on what kind
of rigid groups can appear as Picard varieties, which are consistent with this prediction.
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Notation. Let K a complete non-archimedean field of residue characteristic p. Let OK be
the ring of integers of K and let K+ ⊆ OK be any ring of integral elements. Let m ⊆ K+

be the ideal of topologically nilpotent elements and fix a pseudo-uniformiser $ ∈ m. We use
adic spaces in the sense of Huber [19]. We abbreviate Spa(K,K+) by Spa(K) when K+ is
clear from the context.

In this article, a rigid space over K is by definition an adic space locally of topologically
finite type over Spa(K,K+). In particular, we then denote by SmRigK the category of
smooth rigid spaces over Spa(K,K+). For any rigid space X we denote by SmRigX the slice
category of rigid spaces over X. For rigid spaces X, Y over K, we also write YX := Y ×KX.
We denote by Bd the unit disc of dimension d over K, considered as an affinoid rigid space.

We are most interested in the case of K+ = OK , in which case the notion of rigid spaces
is equivalent to the classical one under mild technical assumptions, but like in [30] it is useful
to consider the more general case since this makes it very easy to later pass to the relative
situation of morphisms of rigid spaces π : X → Y , which is useful for applications.

We use perfectoid spaces in the sense of [29] and denote by PerfK the category of perfec-
toid spaces over (K,K+). We use diamonds in the sense of [32] and denote by LSDK the
category of locally spatial diamonds over Spd(K,K+). For any X ∈ LSDK , we denote by
LSDX the slice category.

By a rigid group over K we mean a group object in the category of rigid spaces over K,
always assumed to be commutative. We denote by Gm the rigid multiplicative group, by
Ga the rigid additive group, and by G+

a ⊆ Ga the subgroup given by the closed unit ball B1.

2. The diamantine Picard functors

Let K be a perfectoid field over Qp and let π : X → Spa(K,K+) be a smooth rigid space.
The aim of this section is to introduce the diamantine Picard functors of X, and to state a
more precise and more general version of the main results, as well as some corollaries. We
do not give any proofs yet, but we end the section with an overview of the strategy of proof.

2.1. Definition of diamantine and rigid Picard functors. Recall that the rigid analytic
Picard functor as considered in [10] can be defined as the abelian sheaf

PicX,ét := R1πét∗Gm : SmRigK,ét → Ab

where SmRigK,ét is the site of smooth rigid spaces over Spa(K,K+) with the étale topology
and where πét : SmRigX,ét → SmRigK,ét is the natural morphism of big étale sites. Con-
jecturally, if X is proper, then PicX,ét is represented by a smooth rigid group variety. As
summarised in the introduction, this is known in many cases, but not yet in full generality.

Our goal in this subsection is to introduce a “diamantine” variant of the Picard functor
defined on perfectoid test objects, and to explain how this can be compared to PicX,ét.

Recall from [32, §15] that there is a fully faithful diamondification functor

SmRigK → LSDK , X 7→ X♦

sending a smooth rigid space X to its associated locally spatial diamond over Spd(K,K+).
We sometimes drop −♦ from notation when this is clear from the context, for example we
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simply write Gm for the diamond that sends a perfectoid space Spa(R,R+) to R×. We write
δ for the morphism of étale sites associated to the above functor (cf [32, Lemma 15.6])

δ : LSDK,ét → SmRigK,ét.

We also need the analogous functor on the site of perfectoid spaces with the étale topology:

ι : LSDK,ét → PerfK,ét .

Since for any adic space Y over K we have Yét
∼= Y ♦ét , both δ∗ and ι∗ are exact functors.

For the definition of the diamantine Picard functor, we now consider the diamondification
π♦ : X♦ → Spd(K,K+). Pullback along this map induces a natural morphism of sites

π♦ét : LSDX,ét → PerfK,ét .

There is a second, much finer topology on perfectoid spaces and diamonds, namely the
v-topology introduced by Scholze in [32, §8,§14]. For this we get a morphism of sites

π♦v : LSDX,v → PerfK,v

with the same underlying functor as π♦ét, but finer topologies on either side.

Definition 2.1. The étale diamantine Picard functor of X is defined to be the sheaf

Pic♦X,ét := R1π♦ét∗Gm : PerfK,ét → Ab.

In the diamantine setting, there is a second Picard functor defined using the finer v-topology:

Pic♦X,v := R1π♦v∗Gm : PerfK,v → Ab.

Remark 2.2. The functor Pic♦X,ét naturally extends to LSDX,ét if we instead define π♦ét to be

the morphism LSDX,ét → LSDK,ét. We can then equivalently define Pic♦X,ét := ι∗R
1π♦ét∗Gm.

The same works for Pic♦X,v, here the difference is less relevant as PerfK,v is a basis of LSDK,v.
That said, for our purposes it is important to restrict to perfectoid test objects: One

reason is that Gm is easier to describe on adic spaces than on diamonds, another that
relative p-adic Hodge theory is much simpler for morphisms X × Y → Y over a perfectoid
base Y .

The two functors Pic♦X,ét and Pic♦X,v are related via a natural morphism: One way to
construct this is via the Leray sequences for the compositions in the commutative diagram

LSDX♦,v PerfK,v

LSDX♦,ét PerfK,ét.

π♦
v

ν

π♦
ét

These induce a natural map

Pic♦X,ét → ν∗Pic♦X,v.

Since both sides have the same underlying category PerfK , we shall in the following drop ν∗
from notation, which amounts to forgetting that Pic♦X,v is already a sheaf for the v-topology.

Second, the two functors Pic♦X,ét and Pic♦X,v are related to the rigid analytic Picard
functor via a natural base-change map: Consider the commutative diagram of big étale sites

LSDX♦,ét SmRigX,ét

LSDK,ét SmRigK,ét.

δ

πét

δ
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For the comparison, we wish to extend the diamondification functor from smooth rigid
spaces to sheaves on SmRigK,ét. For any sheaf F on SmRigK,ét, we therefore define

F♦ := ι∗δ
−1F .

This notation makes sense since F♦ agrees with X♦ if F is represented by a smooth rigid
space X. We note that −♦ is exact because ι∗ is. Consequently, the base change map for
the above diagram induces for any n ≥ 0 a natural morphism of sheaves on PerfK,ét

(1) (Rnπét∗F)♦ → Rnπ♦ét∗F
♦.

Applying this to F = Gm and n = 1, we find that there is a natural morphism

(PicX,ét)
♦ → Pic♦X,ét

of sheaves on PerfK,ét. It is clear from the construction that this is functorial in X.

2.2. The Diamantine Picard Comparison Theorem. With the technical preparations
of the last section, we can now formulate the most general version of our main result. As
this can be interpreted as being “relative p-adic Hodge theory for Gm”, we first explain a
related but simpler result, namely the case of Ga.

To simplify notation in the following without making additional choices, we begin by
introducing notation for the usual Tate twist in p-adic Hodge theory:

Definition 2.3. For any smooth rigid space X over K, we denote by Ω̃1
X := Ω1

X|K{−1} the

sheaf on Xét given by tensoring over K with the Breuil–Kisin–Fargues twist K{−1}. If K
contains all p-power unit roots, this twist is equivalent to the usual Tate twist K(−1).

Assume from now on that X is proper. As we will discuss, following Scholze’s approach
to the Hodge–Tate sequence of p-adic Hodge theory [30][31, §3], one has in general:

Proposition 2.4. There is a natural short exact sequence

0→ H1
an(X,O)→ H1

v (X,O)→ H0(X, Ω̃1
X)→ 0.

This is canonically isomorphic to the usual Hodge–Tate short exact sequence if K is
algebraically closed, via the Primitive Comparison Theorem: H1

v (X,O) = H1
ét(X,Qp)⊗QpK.

As we will show, due to various base-change results for coherent cohomology, we have a
relative “diamantine” version of this short exact sequence. For the formulation, we need:

Definition 2.5. For any abelian sheaf F on PerfK,ét, we define its tangent space as

T0F := Hom(G+
a , F )⊗Zp

Qp
where G+

a is the closed unit with its additive structure. Since Hom(G+
a ,G+

a ) = K+, this is
always a K-vector space. When F is represented by a rigid group variety G, this recovers
the usual notion of tangent spaces by [12, Theorem 3.4].

Proposition 2.6. Let (K,K+) be a perfectoid field extension of Qp. Let π : X → Spa(K,K+)
be any proper smooth rigid space. Then:

1. The natural map (R1πét∗O)♦ → R1π♦ét∗O from (1) is an isomorphism.
2. There is a short exact sequence of sheaves on PerfK,ét, functorial in X,

(2) 0→ R1π♦ét∗O → R1π♦v∗O
HT−−→ H0(X, Ω̃1

X)⊗K Ga → 0

which is canonically isomorphic to − ⊗K Ga applied to the sequence in Proposi-
tion 2.4. In particular, we recover this sequence by passing to tangent spaces.

We note that if K is algebraically closed, this shows that R1π♦v∗O = Hom(π1(X),K)⊗Ga.
We can now formulate a precise version of the main result of this article, which could be

described as a version of Proposition 2.6 for the multiplicative group Gm.
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Theorem 2.7 (Diamantine Picard Comparison Theorem). Let (K,K+) be a perfectoid field
extension of Qp and let X → Spa(K,K+) be any proper smooth rigid space. Then:

1. The natural map (PicX,ét)
♦ → Pic♦X,ét is an isomorphism.

2. There is a short exact sequence of abelian sheaves on PerfK,ét, functorial in X,

(3) 0→ Pic♦X,ét → Pic♦X,v
HT log−−−−→ H0(X, Ω̃1

X)⊗K Ga → 0.

On tangent spaces at the identity, this recovers the sequence (2).

3. The sequence becomes split over the bounded open subgroup of H0(X, Ω̃1
X) ⊗K Ga

defined as the image of H1
v (X,O+)⊗ pG+

a under the Hodge–Tate map HT from (2).

Remark 2.8. We will see in [13] that the sequence (3) is never split globally over all of

H0(X, Ω̃1
X) ⊗K Ga except in the trivial case of H0(X,Ω1

X) = 0. In fact, it is better to

think about the morphism HT log as a non-trivial Pic♦X,ét-torsor for the étale topology. As

we explain in detail in [13], this perspective makes HT log into an analogue of the Hitchin
fibration.

Part 1 of the Theorem makes precise the idea that in order to study étale line bundles on
X ×Y where Y is a perfectoid space, it suffices to understand the situation for rigid Y , and
vice versa. Part 2 is a geometric upgrade of [14, Theorem 1.3.2] in the proper case and could
be described as a statement about “relative p-adic Hodge theory with Gm-coefficients”.

We already mention some consequences of Theorem 2.7 that we will deduce in the end:

Corollary 2.9. 1. (PicX,ét)
♦ is a v-sheaf on PerfK .

2. If we regard Pic♦X,ét as a functor on all of LSDK,ét, then it also satisfies the sheaf

property for v-covers Y ′ → Y where Y is a smooth rigid space and Y ′ is perfectoid.
3. If the rigid Picard functor PicX,ét is represented by a rigid group G, then its dia-

mondification G♦ represents Pic♦X,ét.

4. Conversely, if there is a rigid group G with G♦ ∼= Pic♦X,ét, then G represents PicX,ét.

5. Pic♦X,ét is represented by a rigid group if and only if Pic♦X,v is represented by a rigid
group.

Remark 2.10. The first part shows in particular that the functor sending Y ∈ PerfK,v to
the groupoid of analytic line bundles on X × Y is a v-stack in the sense of [32, §9]. This is
similar in spirit to the statement that vector bundles on the Fargues–Fontaine curve satisfy
v-descent in the perfectoid variable ([7, Proposition II.2.1] [34, Proposition 19.5.3]).

Remark 2.11. Parts 2–5 might open up new strategies to prove that the rigid Picard
functor is always representable by a rigid group whose identity component is semi-abeloid.

In fact, our proof for the étale comparison, i.e. part 1 of Theorem 2.7, works also in higher
cohomological degree. More precisely, our proof will give the following stronger statement:

Theorem 2.12. Let F be one of O, O×, Z/NZ, N ∈ Z. Then for n ≥ 0,

(Rnπét∗F )♦ ∼−→ Rnπ♦ét∗F

is an isomorphism, and both of these sheaves on PerfK,ét are already v-sheaves.

Remark 2.13. In [15], we show that there is also a higher degree analogue of part 2 of
Theorem 2.7: an extension of (3) to a spectral sequence in the category of abelian sheaves
on PerfK,ét which is a multiplicative analogue of the Hodge–Tate spectral sequence of X.
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2.3. Outline of proof strategy. We now give an outline of the proof of Theorem 2.7,
essentially the same line of argument will show Theorem 2.12. The basic strategy is to study
step-by-step the following two cohomological diagrams of sheaves on PerfK,ét: Following the
notation in [14], let us write O× for the sheaf of units on SmRigK,ét represented by Gm. Let

O×1 := 1 + mO+ ⊆ O×,

where we recall that m denotes the ideal of topologically nilpotent elements of K+. If
K+ = OK , then O×1 is represented by the open disc of radius 1 around the origin, but in
general it is the smaller open subgroup of Gm given by the union of closed discs of radius < 1.
The role of O×1 is that it is the domain of convergence of the p-adic logarithm log : O×1 → Ga.

Let

O× := O×/O×1
denote the quotient sheaf. As before, we shall identify these sheaves with their diamondifi-
cations, so that we obtain a short exact sequence on SmRigK,ét as well as on PerfK,ét

0→ O×1 → O× → O
× → 0.

Exactly as in [14, Lemma 2.17], we will see that O× is in fact already a v-sheaf on PerfK .
We now apply to the above sequence the two natural transformations

(Rnπét∗−)♦ → Rnπ♦ét∗(−
♦)→ Rnπ♦v∗(−♦).

This results in a large commutative diagram of sheaves on PerfK,ét

π♦v∗O
×

R1π♦v∗O×1 R1π♦v∗O× R1π♦v∗O
×

R2π♦v∗O×1

π♦ét∗O
×

R1π♦ét∗O
×
1 R1π♦ét∗O× R1π♦ét∗O

×
R2π♦ét∗O

×
1

(πét∗O
×

)♦ (R1πét∗O×1 )♦ (R1πét∗O×)♦ (R1πét∗O
×

)♦ (R2πét∗O×1 )♦

in which the bottom two rows are exact with respect to the étale topology and the top row
is exact with respect to the v-topology (i.e. we have tacitly applied ν∗ to the top row).

We can without loss of generality assume that X is connected. The first step of the proof
can then be summarised by saying that we will prove:

Lemma 2.14. The following hold in the above commutative diagram:

(A) The leftmost horizontal transition maps are 0.
(B) In the fourth column, both maps are isomorphisms.
(C) In the fifth column, the composition of the vertical maps is injective.

Once this is achieved, it follows formally that the top row is already exact for the étale
topology: Indeed, exactness at the second and third term follows from (A) using that ν∗ is
left-exact, and exactness at the fourth term follows from (B) and (C) by a diagram chase.

At this point, the 5-Lemma (applied once to the bottom maps and once to the composi-
tions) reduces us to proving a variant of the Theorem for O×1 instead of Gm:

Proposition 2.15.

1. The map (R1πét∗O×1 )♦ → R1π♦ét∗O
×
1 is an isomorphism.

2. There is a short exact sequence of abelian sheaves on PerfK,ét

0→ R1π♦ét∗O
×
1 → R1π♦v∗O×1

HT log−−−−→ H0(X, Ω̃1
X)⊗K Ga → 0.
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In order to prove this, we apply the same strategy as above to the logarithm sequence

0→ µp∞ → O×1
log−−→ O → 0,

which results in a commutative diagram of sheaves on PerfK,ét

(4)

π♦v∗O R1π♦v∗µp∞ R1π♦v∗O×1 R1π♦v∗O R2π♦v∗µp∞

π♦ét∗O R1π♦ét∗µp∞ R1π♦ét∗O
×
1 R1π♦ét∗O R2π♦ét∗µp∞

(πét∗O)♦ (R1πét∗µp∞)♦ (R1πét∗O×1 )♦ (R1πét∗O)♦ (R2πét∗µp∞)♦

in which again the bottom two rows are exact with respect to the étale topology and the
top row is exact with respect to the v-topology. The fourth row of this diagram is described
by Proposition 2.6. We use this description to prove:

Lemma 2.16. The following hold in the above commutative diagram:

(D) The leftmost horizontal transition maps are 0.
(E) In the second and fifth column, all maps are isomorphisms.
(F) Further towards the right, the map (R2πét∗O)♦ → (R2πv∗O♦) is injective.

Using parts (D), (E), and a direct argument describing the vertical cokernels in the middle
of the top two rows, we see that all sheaves in the above diagram are in fact v-sheaves, so that
may regard (4) as a commutative diagram of v-sheaves with exact rows. Part (F) then implies
part (C) above. Parts (D) and (E) will be enough to prove part 1 of Proposition 2.15.1, and
left-exactness in Proposition 2.15.2. Finally, we will use a relative version of the argument
in [14, §3.5] to prove the right-exactness, using the diamantine universal cover. This will
complete the proof of the Theorem.

From all of the above steps, the key step is arguably the proof of (B): This is where we
need to study the transition from functors on smooth rigid spaces to functors on perfectoid
spaces in great detail. We do this by proving a very general rigid approximation lemma.
This will also be handy to complete some of the other steps, although only (B) uses it in its
full force. Proving the rigid approximation lemma is the goal of the next section.

3. A rigid approximation lemma

We now begin the proof of Theorem 2.7 with a rigid approximation lemma for the sheaf

O× = O×/O×1 introduced in Section 2.3. This will be required for step (B). For the state-
ment we use tilde-limits [20, (2.4.1)][33, §2.4] as well as a slight strengthening for affinoids:

Definition 3.1. For a cofiltered inverse system of adic spaces (Xi)i∈I with qcqs transition
maps, and an adic space X∞ with compatible maps X∞ → Xi for all i ∈ I, we write

X∞ ∼ lim←−
i∈I

Xi

if on the underlying topological spaces, the maps induce a homeomorphism |X∞| = lim←−|Xi|,
and if there is a cover of X∞ by affinoid opens U∞ for which the map lim−→U

O(U)→ O(U∞)

has dense image, where U ⊆ Xi runs through all affinoid opens through which U∞ → Xi

factors, and all i. If moreover all Xi and X∞ are affinoid, we write

X∞ ≈ lim←−
i∈I

Xi

if already the global sections lim−→O(Xi)→ O(X∞) have dense image.
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Proposition 3.2. Let Y be an affinoid perfectoid space over K and let (Yi)i∈I be a cofiltered
inverse system of affinoid smooth rigid spaces such that Y ≈ lim←−Yi. Let X be a qcqs adic
space over K that is either smooth or perfectoid. Let Ui → X × Yi be a qcqs étale map and
set Uj := Ui ×Yi

Yj and U := Ui ×Yi
Y . Then for all n ≥ 0, the natural map

lim−→
j≥i

Hn
ét(Uj , F )→ Hn

ét(U,F )

is an isomorphism for F = O× or F = O+/$ for any 0 6= $ ∈ m.

Remark 3.3. • A priori, the fibre product X×Yi is in the category of diamonds over
Spd(K,K+). But since Yi is smooth, this is represented by a sousperfectoid adic
space in the sense of Hansen–Kedlaya [34, §6.3]: the fibre product of X and Yi over
Spa(K) in the category of uniform adic spaces.
• The analogue of the proposition for F = O+ and O× fails already for n = 0.
• With some more work, the assumption of the Proposition can be weakened, e.g. it

also holds in characteristic p: The proof for perfectoid X works without changes. For
rigid X, one can then use local sections of Frobenius to descend from the perfection.

Proof. The proof will be completed by a series of lemmas. We start with an easy observation:

Lemma 3.4. In the situation of Proposition 3.2, we have:

1. U = lim←−j≥i Uj as diamonds.

2. If U → X × Y is an étale cover, then so is Uj → X × Yj for j � i.

Proof. We have Y ♦ = lim←−i∈I Y
♦
i by [33, Proposition 2.4.5]. Part (i) follows since limits

commute with fibre product.
Part 2 follows from 1 due to the qcqs assumption: Namely, since Uj → X × Yj is étale,

it is open [20, Proposition 1.7.8], so we can without loss of generality replace Uj by its
quasi-compact open image. The statement now follows from the following Lemma. �

Lemma 3.5 ([29, Lemma 6.13.(iv)]). Let T = lim←−Ti be a cofiltered inverse limit of spectral
spaces with spectral transition maps. Let U ⊆ Ti be a quasi-compact open such that T → Ti
factors through U . Then already some Tj → Ti factors through U .

Proof. For any q : Tj → Ti in the inverse system, set Zj := Tj\q−1(U). Then the assump-
tions imply lim←−Zj = ∅. The desired result now follows from [5, 0A2W]. �

In order to continue, we need in the following several subcategories of the étale site:

Definition 3.6. 1. Let Z be a locally spatial diamond over K. Let Zét-qcqs ⊆ Zét be
the full subcategory of quasi-compact quasi-separated étale morphisms U → Z. For
any adic space Z, this also defines Zét-qcqs via the identification Zét = Z♦ét.

2. If Z is an affinoid adic space over K, let Zstdét ⊆ Zét be the full subcategory of
objects Z ′ → Z which are successive compositions of rational open immersions and
finite étale maps. We call such maps standard-étale. By [32, Lemmas 11.31 and
15.6], these form a basis of Zét. Note that we have Zstdét ⊆ Zét-qcqs ⊆ Zét.

Next, we explain that in order to prove Proposition 3.2 for all n ≥ 0, we can reduce to
the case of n = 0. We first note that for n = 0, the statement is the following:

Claim 3.7. In the situation of Proposition 3.2, for any Ui ∈ (X × Yi)ét-qcqs with pullbacks
Uj → X × Yj and U → X × Y , we have

O×(U) = lim−→
j≥i
O×(Uj), O+/$(U) = lim−→

j≥i
O+/$(Uj).
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Suppose that Claim 3.7 holds true. Then the case of n ≥ 0 follows from very general
results on cohomology in inverse limit topoi:

Lemma 3.8. Let Z = lim←−i∈I Zi be a cofiltered inverse limit of spatial diamonds over

Spa(K,K+). Let F be an abelian sheaf on LSDK,ét. Assume that for all i ∈ I and
Ui ∈ Zi,ét-qcqs with pullbacks Uj = Ui ×Zi

Zj and U = Ui ×Zi
Z∞ we have

F (U) = lim−→
j≥i

F (Uj).

Then for all n ≥ 0,
Hn(U,F ) = lim−→

j≥i
Hn(Uj , F ).

Proof. Since the Zi are spatial, we have by [32, Proposition 11.23] an equivalence of sites
Zét-qcqs = 2- lim−→i

Zi,ét-qcqs. Write µj : Z → Zj for the natural projection, then by [5, 09YN]

our assumptions imply that FZ = lim−→j≥i µ
−1
j FZj

, from which the statement follows formally

by [35, VI Théorème 8.7.3] or [5, 09YP]. In fact, we will later only need the case n = 1, in
which case this is a simple Čech argument. �

We have thus reduced Proposition 3.2 to Claim 3.7. We now first prove Claim 3.7 for
qcqs perfectoid X. In this case, we can further reduce the claim to the following statement:

Claim 3.9. In the situation of Proposition 3.2, assume further that X is affinoid perfectoid.
Then for any Ui ∈ (X × Yi)stdét with pullbacks Uj ∈ (X × Yj)stdét for j ≥ i and U ∈
(X × Y )stdét, we have

O×(U)/O×1 (U) = lim−→
j≥i
O×(Uj)/O×1 (Uj), O+(U)/$ = lim−→

j≥i
O+(Uj)/$.

Indeed, suppose we know Claim 3.9. Then using the equivalence of sites

(X × Y )stdét = 2- lim−→
i

(X × Yi)stdét

and the fact that (X × Y )stdét is a basis for (X × Y )ét, it follows upon sheafification that

O×(U) = lim−→
j≥i
O×(Uj), O+/$(U) = lim−→

j≥i
O+/$(Uj).

More generally, we now also obtain these last two equalities if Ui ∈ (X × Yi)ét-qcqs, because
any such Ui can be covered by finitely many objects of (X × Yi)stdét and their intersections
are again covered by finitely many objects of (X × Yi)stdét due the qcqs assumption.

In a second step, this now implies Claim 3.7 for qcqs perfectoid X, by applying the same
covering argument to a finite cover of X by affinoid perfectoid subspaces.

We now prove Claim 3.9 step by step. We first treat the case that X = Spa(K,K+)
where (K,K+) is a perfectoid field. In fact, for the following discussion until Lemma 3.13
inclusively, we can allow the greater generality that (K,K+) is any non-archimedean field
of residue characteristic p. We fix a pseudo-uniformiser 0 6= $ ∈ m.

Lemma 3.10. Let (Yi)i∈I be a cofiltered inverse system of affinoid adic spaces over K with
an affinoid tilde-limit Y ≈ lim←−Yi. Then the following maps are isomorphisms:

lim−→
i

O×(Yi)/O×1 (Yi)→ O×(Y )/O×1 (Y ), lim−→
i

O+(Yi)/$ → O+(Y )/$.

Proof. Let f ∈ O+(Y ). Then we approximate f by some fi ∈ O(Yi) whose image in O(Y )
satisfies |fi − f | ≤ |$|. In particular, we then have fi ∈ O+(Y ). The condition |fi| ≤ 1
defines a quasi-compact open subspace U of Yi through which Y → Yi factors. We may
apply Lemma 3.5 to this situation since any morphism between affinoid analytic adic spaces
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is spectral. Consequently, there is j ≥ i such that Yj → Yi factors through U , which means
that the image fj of fi in O(Yj) is already in O+(Yj). This shows surjectivity.

Injectivity follows by a similar argument: If fi ∈ O+(Yi) is such that its image f ∈ O+(Y )
is already in $O+(Y ), then some Yj → Yi factors through the quasi-compact open defined
by |fi| ≤ |$| because Y → Yi does. Thus fi goes to 0 ∈ O+(Yj)/$.

The proof for O× is similar as the proof of [14, Lemma 2.17] goes through verbatim: To
see injectivity, let gi ∈ O×1 (Yi) be in the kernel. Then since Y is quasi-compact, there is
ε > 0 such that |gi − 1| ≤ |$|ε on Y . By Lemma 3.5 we have gi ∈ O×1 (Yj) for some j � i.

To see that the map is surjective, let f ∈ O×(Y ). By assumption, we can find approx-
imating sequences fi → f and f ′i → f−1 with fi, f

′
i ∈ O(Yi). Then fif

′
i → 1 and thus

fif
′
i ∈ O

×
1 (Y ) for i � 0. By the above argument, it follows that fif

′
i ∈ O

×
1 (Yj) for some

j ≥ i. But then fi ∈ O×(Yj), which implies that fi is in the image of the map. �

According to Lemma 3.10, in order to prove Claim 3.9, it suffices to prove that U ≈ lim←−Ui.
We now first prove this when Ui = X×Yi. Recall that X is affinoid perfectoid in Claim 3.9.

Lemma 3.11. Let X and Y be affinoid perfectoid spaces and assume we have a tilde-limit
Y ≈ lim←−Yi for some smooth affinoid rigid spaces Yi over K. Then X × Y ≈ lim←−X × Yi.
Proof. Since X and Y are affinoid perfectoid, we have

O+(X × Y )/$
a
= O+(X)⊗K+ O+(Y )/$.

The diamond X×Yi is represented by an affinoid adic space (cf Remark 3.3): This is defined
by the Huber pair (Bi[1/$], Bi) given by setting Ai := O+(X)⊗̂O+(Yi) and defining Bi to
be the integral closure of the image of Ai in Ai[1/$]. Consider now the composition

lim−→Ai → lim−→Bi → O+(X × Y )
a
= O+(X)⊗̂K+O+(Y ).

Here the second map is O+ evaluated on X × Y → X × Yi. We wish to see that this second
map is an almost isomorphism mod $. This will imply that X × Y ≈ lim←−iX × Yi.

By Lemma 3.10, the assumptions imply that O+(Y )/$ = lim−→O
+(Yi)/$, hence the above

composition is an almost isomorphism mod $. The statement now follows formally: Let us
axiomatise the argument for later reference.

Lemma 3.12. Let A
f−→ B

g−→ C be morphisms of OaK-modules such that

• B is $-torsionfree
• f [1/$] and (g ◦ f)/$ are both isomorphisms.

Then g/$ is an isomorphism.

Proof. Let T ⊆ A be the $-power torsion submodule, then T/$ ↪→ A/$ is injective. The
map f/$ is almost injective since (g ◦ f)/$ is. On the other hand, T → B is trivial since
B is $-torsionfree. This implies that T/$ = 0. In particular, we have (A/T )/$ = A/$.
We also have (A/T )[1/$] = A[1/$]. We may thus replace A by A/T and assume without
loss of generality that A is $-torsionfree. In particular, f is then injective since f [1/$] is.

In this situation, the cokernel of f is $-power torsion (since f [1/$] is an isomorphism)
but also $-torsionfree (since f/$ is injective). Consequently, f is an isomorphism, thus
f/$ is an isomorphism, and hence so is g/$ given that (g ◦ f)/$ is. �

Applying Lemma 3.12 to the given sequence finishes the proof of Lemma 3.11. �

Finally, in order to prove Claim 3.9, it remains to add a standard-étale map on top of
X × Yi. Setting Z := X × Y and Zi := X × Yi to simplify notation, we wish to see:

Lemma 3.13. Let Z ≈ lim←−Zi be an affinoid perfectoid tilde-limit of affinoid adic spaces
Zi over K. Let Ui → Zi be an object of Zi,stdét. For j ≥ i write Uj := Ui ×Zi

Zj and
U := Ui ×Zi

Z. If all of these are adic spaces, then U ≈ lim←−j≥i Uj.
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Proof. We can prove this separately in the cases of finite étale maps and rational localisation.
Case 1: Ui → Zi finite étale. Write Sj = O(Zj) and S := O(Z). Similarly, for any j ≥ i,
let Rj := O(Uj) and R := O(U). By [32, Lemma 15.6] and [21, Lemma 8.2.17.(i)], the
map Si → Ri is finite étale and we have Rj = Ri ⊗Si Sj and R = Ri ⊗Si S. To see that
lim−→j≥iRj → R has dense image, it now suffices to see that we can approximate simple

tensors r ⊗ s in Ri ⊗Si
S = R. For this we use that lim−→O(Sj) → O(S) has dense image to

find a sequence sj ∈ Sj with sj → s. This implies r⊗ sj → r⊗ s, showing the desired dense
image property. By [20, Remark 2.4.3.(ii)], we also have |U | = lim←−|Uj |. Thus U ≈ lim←−Uj .
Case 2: Ui → Zi a rational open immersion. Since Z is affinoid perfectoid, we have S+ :=

O+(U)
a
= O◦(U) = S◦. It therefore suffices to prove that for all n ∈ N,

lim−→O
+(Uj)/$

n → O◦(U)/$n

is an almost isomorphism. Second, by [29, Lemma 6.4], the rational open U ⊆ Z is of the
form Z(f1, . . . , fn/g) for some f1, . . . , fn, g ∈ ](O[+(Z)) with fn = $N for some N , and can
be written as

U = Spa(R,R+) where R+ a
= S◦〈(f1/g)1/p∞ , . . . , (fn/g)1/p∞〉.

Set ε := |$N |. Then for every l ∈ N, we can find jl large enough such that there are
f1,l, . . . , fn,l, gl in O(Zjl) such that on Z we have for all i = 1, . . . , n:

|fi,l − f1/pl

i | ≤ ε and |gl − g1/pl | ≤ ε.

Then on Z, the conditions |fi,l| ≤ |gl| and |f1/pl

i | ≤ |g1/pl | are equivalent, and thus cut out
the same rational open subspace of Z. For any j ≥ jl, let

Uj := Zj(f1,l, . . . , fn,l/gl),

then this means that U = Z ×Zj Uj . Moreover, we have a natural isomorphism

S◦〈(fi/g)1/pl〉/$ = S◦〈fi,l/gl〉/$
given explicitly by

S◦/$[T1 . . . , Tn]/(Tig
1/pl − f1/pl

i ) ∼−→ S◦/$[T1, . . . , Tn]/(Tigl − fi,l),

Ti 7→
(

1 +
g1/pl − gl

gl

)−1(
Ti −

fi,l − f1/pl

i

gl

)
.

Under these compatible identifications, in the limit over l, it makes sense to write

R◦/$
a
= S◦/$

[
fi,l
gl

∣∣i = 1, . . . , n and l ∈ N
]
.

For fixed l, Lemma 3.5 implies that for j � jl we have fi,l, gl ∈ O+(Zj). Let

Aj,l := O+(Zj)〈fi,l/gl|i = 1, . . . , n〉, Bj := O+(Uj).

Explicity, Bj is the integral closure of the image of Aj,l in Aj,l[
1
$ ]. In particular, we have

Bj [1/$] = Aj,l[1/$].

We now observe that by construction, for any fixed l, the map

lim−→
j≥jl

Aj,l/$ = lim−→
j≥jl

(O+(Zj)/$)[fi,l/gl]→ (S◦/$)[fi,l/gl]
a
= (S◦/$)[(fi/g)1/pl ]

is an almost isomorphism since this was true before tensoring with O+(Zjl)[fi,l/gl]. Taking
the colimit over l, this shows that also

lim−→
l∈N

lim−→
j≥jl

Aj,l/$
a
= (S◦/$)[(fi/g)1/p∞ ]

a
= O+(U)/$
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is an almost isomorphism. The desired statement now follows from Lemma 3.12 applied to
the sequence

lim−→
l

lim−→
j≥jl

Ai,l → lim−→
j

Bj → O+(U)/$.

This finishes the proof of Lemma 3.13. �

Combining Lemma 3.13 with Lemma 3.10, we have thus proved Claim 3.9, which finishes
the proof of Proposition 3.2 for perfectoid X.

In order to deduce the case of smooth rigid X, it again suffices to prove Claim 3.7 in this
case. To this end, we return to our original setup that K is a perfectoid field over Qp. We
then have the following consequence of the perfectoid case:

Lemma 3.14. Let X be a smooth rigid space and let Y be affinoid perfectoid over K. Then
on X × Y , we have

O+
ét/$

a
= ν∗(O+

v /$).

In particular, this holds on any smooth rigid space. Similarly, O×ét = ν∗O
×
v .

Remark 3.15. We show a more general statement in [12, Proposition 2.14], which also says

that in fact, we can write = instead of
a
=. But Lemma 3.14 is much easier to see:

Proof. The statement is local on X. We may therefore assume that X is affinoid and

that we can find an affinoid perfectoid pro-finite-étale Galois cover X̃ = lim←−Xi → X with

group G = lim←−Gi. Let U ∈ (X × Y )stdét be standard-étale, in particular affinoid, and let

Ũ → X̃×Y be the pullback. We can without loss of generality assume that Ũ = lim←−Ui → U

is affinoid perfectoid and pro-finite-étale Galois with group G. Then we have (O+
ét/$)(Ũ)

a
=

(O+
v /$)(Ũ) since Ũ is perfectoid and O+ is almost acyclic on affinoid perfectoids for both

the étale and the v-topology by [29, Proposition 7.13] and [32, Proposition 8.8], respectively.
Consequently,

(O+
v /$)(U) = (O+

v /$)(Ũ)G
a
= (O+

ét/$)(Ũ)G = lim−→
i

(O+
ét/$)(Ui)

Gi = O+
ét/$(U),

where the third step follows from Lemma 3.13 and Lemma 3.10 upon étale sheafification.

The case of O× is analogous once we know that

O×ét(Ũ) = O×v (Ũ).

To see this, let τ be either the étale or the v-topology, then we have the exponential sequence
from [14, Lemma 2.18]:

0→ Oτ
exp−−→ lim−→

x 7→xp

O×τ → O
×
τ → 1.

This remains short exact after evaluating at Ũ since O is acyclic on affinoid perfectoids in

both topologies. The desired statement now follows from the fact that Oét(Ũ) = Ov(Ũ) and

O×ét(Ũ) = O×v (Ũ) since Ũ is perfectoid. �

It follows that in order to prove Claim 3.7 for rigid X, it suffices to prove the statement

for O+
ét/$ replaced by O+

v /$, and O×ét replaced by O×v . But since X is a qcqs smooth

rigid space, there is a v-cover of X by a qcqs perfectoid space X̃ such that X̃ ×X X̃ is qcqs
perfectoid. Therefore the result now follows from the statement for perfectoid X.

This finishes the proof of Proposition 3.2. �

Our main application of Proposition 3.2 is that it implies the first part of Lemma 2.14.(B):
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Corollary 3.16. Let π : X → Spa(K) be a qcqs smooth rigid space. Then the morphism of
sheaves on PerfK,ét

(Rnπét∗O
×

)♦ ∼−→ Rnπ♦ét∗O
×

from (1) is an isomorphism for all n ≥ 0. Similarly for O+/$ for any 0 6= $ ∈ K+.

Proof. Unravelling the definition, we see that both sides are the étale sheafifications of the
presheaves on PerfK defined as follows: The left hand side is

Y 7→ lim−→
Y→Z

Hn
ét(X × Z,O

×
)

where Y → Z ranges through all morphisms to affinoid smooth rigid spaces Z over K, and
where we use Yét-qcqs = 2- lim−→Zét-qcqs to see that it suffices to sheafify with respect to Y .

The right hand side is

Y 7→ Hn
ét(X × Y,O

×
).

We would like to argue that theses two presheaves are isomorphic on affinoid perfectoid Y
by Proposition 3.2 in the case of U = X × Y . To see that this applies, it remains to prove:

Proposition 3.17. Let (K,K+) be a non-archimedean field over Zp and let Y → Y0 be
a morphism of affinoid adic spaces over (K,K+). Assume that Y is uniform and that for
any affinoid smooth morphism Y1 → Y0 of topologically finite type also Y1 is uniform. For
example, this is satisfied when Y and Y0 are sousperfectoid. Let (Y → Yi)i∈I be the cofiltered
inverse system of all morphisms of adic spaces from Y into affinoid adic spaces Yi that are
smooth of topologically finite type over Y0. Then

Y ≈ lim←−
Y→Yi

Yi.

In particular, if K is perfectoid, then for any abelian sheaf F on SmRigK,ét and any n ≥ 0,
we have

Hn
ét(Y, F

♦) = lim−→
i

Hn
ét(Yi, F ).

All of this remains true if we instead take the Yi to be open subspaces of unit balls over Y0.

Proof. That the assumptions are satisfied when Y and Y0 are sousperfectoid follows from
[34, Propositions 6.3.3 and 6.3.4].

Let 0 6= $ ∈ K+ be a pseudo-uniformiser. As the very first step, we consider a different
inverse system that is not yet smooth: Write Y = Spa(S, S+) and Y0 = Spa(S0, S

+
0 ) and let

J be the partially ordered set of finite subsets of S+. For J ∈ J , let SJ be the image of

φJ : S0〈Xj |j ∈ J〉 → S, Xj 7→ j,

and let S+
J be the integral closure of the image SJ,0 of S+

0 〈Xj |j ∈ J〉 in SJ . Then SJ ⊆ S,

and the ZJ := Spa(SJ , S
+
J ) form a cofiltered inverse system of adic spaces of topologically

finite type over Y0 such that lim−→J∈J S
+
J → S+ is an isomorphism by construction: In fact,

already lim−→J∈J SJ,0 → S+ is an isomorphism. We thus have Y ≈ lim←−J∈J ZJ where we use

[33, Proposition 2.4.2] to see the required statement about the underlying topological spaces.
Here we use that S is uniform, so S+ has the $-adic topology.

Passing to the inverse system I in the Lemma, we note that any morphism Y → Yi to
a smooth affinoid adic space over Y0 factors through some ZJ . We thus get a well-defined
map

(5) lim−→
i∈I
O+(Yi)→ lim−→

J∈J
O+(ZJ) = lim−→

J∈J
SJ,0

and it suffices to prove that this becomes an isomorphism after $-adic completion.
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We first note that the map is surjective: this is because any ZJ has by its definition via
φJ a closed immersion into a closed ball ZJ ↪→ BJ , and BJ is smooth and thus appears as
one of the Yi on the left hand side. Thus SJ,0 is in the image.

To see that it is in fact an isomorphism after $-adic completion, let Y → Z = Spa(R,R+)
be any morphism into a smooth affinoid over Y0. Let Z0 ⊆ Z be the closure of the image,
i.e. the closed subspace cut out by the kernel N ⊆ R of the corresponding map R→ S.

Claim 3.18. We have Z0 ≈ lim←−Z0⊆U⊆Z
U where U ranges through the rational open neigh-

bourhoods of Z0 in Z.

Proof. Clearly lim−→O(U)→ O(Z0) is even surjective, so it suffices to check the condition on

topological spaces: Both sides are subspaces of |Z|, so the map is necessarily a homeomor-
phism onto its image. It is also surjective: Let x ∈ |Z|\|Z0|, then there is f ∈ N such that
|f(x)| 6= 0. Since $ is topologically nilpotent and Z is quasi-compact, it follows that there
is k such that |f(x)| > |$k| on Z. Thus |f | ≤ |$k| defines a rational open neighbourhood
of Z0 that does not contain x. �

Lemma 3.10 now implies that lim−→Z0⊆U⊆Z
O+(U) → O+(Z0) becomes an isomorphism

mod $k. It follows that both sides of (5) agree mod $k with

lim−→
Y→U⊆Bn

Y0

O+(U)/$k,

where the index category consists of morphisms from Y into rational open subspaces U ⊆ BnY0

of rigid polydiscs. This proves the first part of Lemma 3.17.
The part about cohomology now follows from Lemma 3.8. Alternatively, we could follow

the argument in [32, Proposition 14.9], or in [30, Lemma 3.16, Corollary 3.17]. �

Proposition 3.17 applied to Y0 = Spa(K) thus finishes the proof of Corollary 3.16. �

A similar but much easier argument as in Corollary 3.16 completes step (E) of Lemma 2.16:

Corollary 3.19. For any n,N ∈ N, the map from (1) for F = Z/NZ is an isomorphism

(Rnπét∗Z/NZ)♦ ∼−→ Rnπ♦ét∗Z/NZ.

Proof. Arguing as in the last proof, we see that the first term is the sheafification of

Y 7→ lim−→
Y→Z

Hn
ét(X × Z,Z/N),

whereas the second term is the sheafification of Y 7→ Hn
ét(X ×Y,Z/N). The two presheaves

agree by [32, Proposition 14.9] which applies by Proposition 3.17. �

In summary, we have in this section completed those parts of Lemma 2.14.(B) and
Lemma 2.16.(E) that concern the comparison of the bottom two rows.

4. Cohomology of products of rigid with perfectoid spaces

The main aim of this section is to complete the proofs of Lemma 2.14 and Lemma 2.16. We
start with cohomological computations for the sheaf O, for which we also prove the results
described in the first part of Section 2.2, namely Proposition 2.4 and Proposition 2.6.
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4.1. Cohomology of O. We begin with a few general lemmas on the cohomology of “mixed
tensor products” of rigid with perfectoid spaces, which are essentially coherent base-change
results. For these we crucially use Kiehl’s Theorem that RΓ(X,O) is perfect for any proper
rigid space X.

Lemma 4.1. Let X be an affinoid rigid space over K and let Y be an affinoid perfectoid
space. Then for n > 0, we have Hn

ét(X × Y,O) = 0.

Proof. This is true in much greater generality by an application of [21, Theorem 8.2.22(c)].
This applies here because étale maps that factor into rational embeddings and finite étale
maps form a basis for (X × Y )ét by Proposition [32, Proposition 11.31]. �

Proposition 4.2. Let X be a smooth proper rigid space over K.

1. Let Y be any smooth affinoid rigid space. Then

Hn
ét(X × Y,O) = Hn

ét(X,O)⊗K O(Y ).

2. Let Y be an affinoid perfectoid space over K. Then there are natural isomorphisms:

(i) Hn
ét(X × Y,O) =Hn

ét(X,O)⊗K O(Y ),

(ii) Hn
v (X × Y,O) =Hn

v (X,O)⊗K O(Y ),

(iii) Hn
v (X × Y,O+/pk)

a
=Hn

v (X,O+/pk)⊗K+ O+/pk(Y ).

In particular, Rnπ♦ét∗O = Hn
ét(X,O)⊗K O and Rnπ♦v∗O = Hn

v (X,O)⊗K O.
3. Let Y be an affinoid perfectoid space over K and assume that K is algebraically

closed. Then the following natural map is an almost isomorphism:

Hn
ét(X,Zp)⊗Zp

O+(Y )→ Hn
v (X × Y,O+).

We remark that these statements are all easier special cases of a much more general adic
version of Grothendieck’s “cohomology and base-change” which will be proved in the sequel
[17, Theorem 3.18]. For example, smoothness is not necessary for Proposition 4.2.1.

Proof. We start with part 2.(ii): Since X is quasi-compact separated, we can choose a finite
cover U of X by affinoids Ui with affinoid intersections that are étale over a torus, and thus

admit toric pro-finite-étale covers Ũi → Ui. Then any fibre product of the Ũi over X is
affinoid perfectoid. Consequently, the cohomology Hn

v (X,O+) is almost computed by the

Čech complex Č•(Ũ ,O+) where Ũ is the pro-étale cover of X by the Ũi.
Each Hn

v (X,O+) has bounded p-torsion: This follows from the fact that the sheaves
in Proposition 4.3 are coherent, so Hn

v (X,O) is finite dimensional. By an application of

Lemma A.3.1 in the appendix, this implies that Č•v (Ũ ,O+) is a complex of p-torsionfree
p-complete K+-modules whose cohomology has bounded p-torsion.

We now add the factor Y : Clearly the Ũi × Y form a cover Ũ × Y of X × Y such that all
spaces appearing in the Čech nerve are still affinoid perfectoid. Let O+(Y ) = S+, then the

fact that Č•v (Ũ ,O+) has cohomology of bounded torsion implies by Lemma A.3.2 that

Hn
v (X × Y,O+)

a
=Hn(Č•(Ũ × Y,O+))

a
= Hn(Č•(Ũ ,O+)⊗̂K+S+)

a
=Hn(Č•(Ũ ,O+))⊗̂K+S+

a
=Hn

v (X,O+)⊗K+ S+.

After inverting p, this gives the desired equality for 2.(ii).
Part 2.(iii) also follows from the displayed equation by comparing the long exact sequences

of 0→ O+ → O+ → O+/pk → 0 for X × Y and X, using the 5-Lemma.
If K is algebraically closed, we also deduce part 3 using the Primitive Comparison The-

orem, [30, Theorem 5.1].
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Part 2.(i) follows by a similar argument using instead the cover U : By Lemma 4.1, the
group Ȟn(U ,O⊗̂S) computes Hn

ét(X × Y,O). Since each Ȟn(U ,O) is finite, we can now

again apply Lemma A.3.2 to the complex of K+-modules Č•(U ,O+) to see that:

Hn
ét(X × Y,O) = Hn(Č•(U ,O+)⊗̂K+S+)[ 1

p ] = Ȟn(U ,O+)⊗̂K+S+[ 1
p ] = Hn

ét(X,O)⊗ S.

Part 1 can be seen similarly: By Tate acyclicity, Ȟn(U × Y,O) computes Hn(X × Y,O).
For any affinoid U ⊆ X, the map O+(U)⊗̂K+O+(Y )→ O+(U × Y ) has bounded p-torsion
cokernel since U × Y is uniform. Hence in the composition

Hn(Č•(U ,O+))⊗̂K+O+(Y )→ Hn(Č•(U ,O+)⊗̂K+O+(Y ))→ Hn(Č•(U × Y,O+)),

the second map becomes an isomorphism after inverting p, while the first map is an isomor-
phism by Lemma A.3. After inverting p, this gives the desired statement. �

Second, we need the following result of Scholze:

Proposition 4.3 ([31, Proposition 3.23], [14, 2.24–2.25]). Let X be any smooth rigid space

and let ν : Xv → Xét be the natural morphism of sites. Then Rnν∗O = ∧nΩ̃1
X .

Proof of Proposition 2.4. Using Proposition 4.3, we see that the 5-term exact sequence of
the Leray sequence for the morphism ν is of the form

(6) 0→ H1
ét(X,O)→ H1

v (X,O)→ H0(X, Ω̃1
X)

∂X−−→ H2
ét(X,O)

jX−−→ H2
v (X,O).

If K is algebraically closed, it follows from the degeneration of the Hodge–Tate spectral
sequence [1, Theorem 1.7.(ii)] that ∂X = 0. This implies that the fourth map jX is injective.

The general case follows from this: It suffices to prove that ∂X = 0, or equivalently that
jX is injective. Let C be the completion of an algebraic closure of K. By Proposition 4.2 for
Y = Spa(C), the base-change of jX along K → C admits an identification jX ⊗K C = jXC

.
This is injective by the algebraically closed case, hence jX is injective. �

We now move on to the relative Hodge–Tate sequence:

Proof of Proposition 2.6. The first part follows from comparing Proposition 4.2.1 and 2.
To see the second part, we tensor the Hodge–Tate sequence for X from Proposition 2.4

with O and see from Proposition 4.2.2.(i) and (ii) for i = 1 that we obtain identifications

0 R1π♦ét∗O R1π♦v∗O

0 H1
ét(X,O)⊗O H1

v (X,O)⊗O H0(X, Ω̃1(X))⊗O 0. �

∼ ∼

We can now also address Lemma 2.16.(F):

Proposition 4.4. The map (R2πét∗O)♦ → R2π♦v∗O is injective.

Proof. In the notation of the sequence (6) above, Proposition 4.2.2 for i = 2 identifies this
map with jX⊗O : H2

ét(X,O)⊗O ↪→ H2
v (X,O)⊗O. This is injective by Proposition 2.6. �

From the case of i = 0 of Proposition 4.2, we will moreover deduce part (D) of Lemma 2.16
(see the end of this subsection). For this we will use the following consequence:

Corollary 4.5. Suppose that X is geometrically connected. Then

(πét∗O)♦ = O = π♦ét∗O = π♦v∗O.

The analogous statements hold for O×1 , O× and O+a/pk.
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Proof. The first part follows from Proposition 4.2.1-2.(i): Here we use that H0(X,O) = K
since X is geometrically connected. The cases of O× and O×1 follow as these are subsheaves
of O.

For O+a/pk, we first recall that we have (πét∗(O+/pk))♦ = π♦ét∗(O+/pk) by Corol-

lary 3.16. Second, we have π♦ét∗(O+/pk) = π♦v∗(O+/pk) by Lemma 3.14. Finally, it follows

from Proposition 4.2.2.(iii) that π♦v∗(O+/pk) = H0
v (X,O+/pk)⊗O+/pk. It thus remains to

see that H0
v (X,O+/pk)

a
= K+/pk. For this we can use Proposition 3.2 to reduce to the case

that K is algebraically closed, where the statement follows from Proposition 4.2.3. �

We can also deduce a version of the Primitive Comparison Theorem relatively over Y :

Corollary 4.6. Assume that K is algebraically closed. Let X be a smooth proper rigid space
over K and let Y be affinoid perfectoid over K. Then the natural map

Hn
v (X,Z/pk)⊗O+(Y )/pk → Hn

v (X × Y,O+/pk)

is an almost isomorphism for all n ≥ 0. In particular, the natural map

Hn
v (X,Fp)⊗O[+(Y )→ Hn

v (X × Y,O[+)

is an almost isomorphism for all n ≥ 0, compatible with Frobenius actions on both sides.

Proof. The first part follows from Proposition 4.2.3, using the sequence O+ → O+ → O+/pk

and the fact that Hn
ét(X,Z/pk) = Hn

v (X,Z/pk) by [32, Propositions 14.7 and 14.8]. The
second part follows from the case of k = 1 in the inverse limit over Frobenius. �

Proposition 4.7 (Künneth formula). Let X be a smooth proper rigid space and let Y be
affinoid perfectoid. Then there is a natural isomorphism for all n ≥ 0

Hn
v (X × Y,Fp) =

(
Hn−1
v (X,Fp)⊗H1

v (Y,Fp)
)
⊕
(
Hn
v (X,Fp)⊗H0

v (Y,Fp)
)
.

Proof. We consider the v-cohomological long exact sequence for the Artin–Schreier sequence

0→ Fp → O[
AS−−→ O[ → 0

on X × Y . By Corollary 4.6.2, this yields a long exact sequence

. . .
AS−−→ Hn−1(X,Fp)⊗O[(Y )→ Hn

v (X × Y,Fp)→ Hn(X,Fp)⊗O[(Y )
AS−−→ . . .

Since Hn
v (Y,O) = 0 for n ≥ 1, we have H1

v (Y,Fp) = coker(AS : O[(Y ) → O[(Y )) and
Hn
v (Y,Fp) = 0 for n ≥ 2. It follows that we can rewrite the above as a natural extension

0→ Hn−1
v (X,Fp)⊗H1

v (Y,Fp)→ Hn
v (X × Y,Fp)→ Hn

v (X,Fp)⊗H0
v (Y,Fp)→ 0.

Recall that π0(Y ) is always a profinite space [5, Tag 0906]. By comparing to the case that
Y = π0(Y ) is strictly totally disconnected, in which case H1

v (Y,Fp) = 0, we see that pullback

along X × Y → X × π0(Y ) defines a natural splitting of the last map. �

We use this to complete the second part of Lemma 2.14.(E):

Corollary 4.8. For any N ∈ N and n ≥ 0, we have a natural isomorphism

Rnπ♦ét∗Z/NZ = Rnπ♦v∗Z/NZ.

If K is algebraically closed, this is isomorphic to Hn
ét(X,Z/NZ), the locally constant sheaf

on PerfK,v associated to the group Hn
ét(X,Z/NZ).
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Proof. For N coprime to p, this follows from general base-change results for the diagram

X♦v PerfK,v

X♦ét PerfK,ét,

π♦
v

ν

π♦
ét

namely by [32, Theorem 16.1.(iii) and Proposition 16.6], the base-change morphism

ν∗Rnπ♦ét∗Z/NZ→ Rnπ♦v∗Z/NZ

is an isomorphism, and ν∗ν
∗F = F for any sheaf on PerfK,ét by [32, Proposition 14.7].

The last sentence of the Corollary is clear whenK+ = OK since any sheaf on Spa(K,OK)ét

is constant. The general case follows from this: Let j : Spa(K,OK) ↪→ Spa(K,K+) be the
natural open immersion, then it follows from [20, Proposition 8.1.2.(ii)] that

Rnπét∗Z/NZ = j∗j
∗Rnπét∗Z/NZ = j∗H

n
ét(X,Z/NZ) = Hn

ét(X,Z/NZ).

For N a power of p, we can reduce by induction to the case of N = p. Then Rnπ♦v∗Fp is
the v-sheafification of

Y 7→ Hn
v (X × Y,Fp).

By Proposition 4.7, this is the locally constant sheaf of Hn
ét(X,Fp) = Hn

v (X,Fp). �

At this point, we can complete the proof of Lemma 2.16:

Corollary 4.9. For any n ≥ 0, the following morphisms are isomorphisms:

(Rnπét∗µp∞)♦ → Rnπ♦ét∗µp∞ → Rnπ♦v∗µp∞

Proof. By quasi-compactness, it suffices to prove this for µp∞ replaced by µpm . We can check

the statement locally on PerfK,ét, and may therefore assume that K contains µpm(K). Then
µpm ∼= Z/pmZ and the statement follows from Corollary 3.19 and Corollary 4.8. �

Proof of Lemma 2.16. For Part (D), we use that by Corollary 4.5, the left-exact sequence

0→ π♦ét∗µp∞ → π♦ét∗O
×
1 → π♦ét∗O → 0

is also right-exact. The analogous statements hold for π♦v∗O and (πét∗O)♦. This implies
Lemma 2.16.(D). Part (E) is Corollary 4.9, (F) is Proposition 4.4. �

4.2. Cohomology of O×. We now move on to proving the remaining parts of Lemma 2.14

concerning the sheaf O×. For some relevant background information on this sheaf, the
interested reader might find it helpful to look at [14, §2.3-§2.4] on which some arguments in
the following are based. We begin with some preparations.

Lemma 4.10. Let X be a rigid space over an algebraically closed field K. Then evaluation
at points in X(K) induces a unique injective map fitting into the commutative diagram:

O×(X) Mapcts(X(K),K×)

O×(X) Maplc(X(K),K×/(1 + m)).

.

Proof. The first arrow is given by interpreting f ∈ O×(X) as a morphism X → Gm and
evaluating on K-points. By the Maximum Modulus Principle, this sends f ∈ O×(X) into
Mapcts(X(K), 1 + m) if and only if f ∈ O×1 (X). It now suffices to construct the bottom

map for affinoid X, where O×(X) = O×[ 1
p ](X)/O×1 (X) by [14, Lemma 2.19] �
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Lemma 4.11. Let X be a smooth proper rigid space over K that is geometrically connected.

1. For Y any reduced rigid space over K, we have O×(X × Y ) = O×(Y ).

2. For Y any perfectoid space over K, we have O×(X × Y ) = O×(Y ).

In particular, we have (πét∗O
×

)♦ = π♦ét∗O
×

= π♦v∗O
×

= O×.

Proof. We first explain how to deduce part 2 from part 1: The statement is local on Y , so we
can assume that Y is affinoid perfectoid. By Proposition 3.17, we can then find an inverse
system of affinoid smooth rigid spaces (Yi)i∈I over K such that Y ≈ lim←−Yi. Assuming part 1,
we then have by Proposition 3.2:

O×(X × Y ) = lim−→
i∈I
O×(X × Yi) = lim−→

i∈I
O×(Yi) = O×(Y ).

Next, let us explain the last sentence of the Lemma: Recall that we had already seen in

Corollary 3.16 that (πét∗O
×

)♦ = π♦ét∗O
×

. That π♦ét∗O
×

= π♦v∗O
×

follows from Lemma 3.14.

Part 2 implies π♦v∗O
×

= O× immediately from the definition.
It thus remains to prove part 1. For this, we can assume that Y is affinoid and connected.

Second, we can without loss of generality assume that K is algebraically closed: Let K be
an algebraic closure of K and let C be its completion. Then to deduce the general case from
that over C, let G := Gal(K|K) and consider the G-torsor X × YC → X × Y . Assuming

part 1 for C, and using that O× is a v-sheaf by Lemma 3.14, we then have

O×(X × Y ) = O×(X × YC)G = O×(YC)G = O×(Y ).

Now for algebraically closed K, we start with Y = Spa(K). In this case, using that

X is connected, we compare to the universal pro-étale cover X̃ → X of [14, §4]: Using

the exponential sequence 0 → O → O×[ 1
p ] → O× → 1 from [14, Lemma 2.18], we have a

commutative diagram

O×[ 1
p ](X̃) O×(X̃) H1(X̃,O) = 0

O×[ 1
p ](X) O×(X) H1(X,O)

in which by [14, Proposition 3.10], the top row can be identified with the sequence

K×[ 1
p ]→ K×/(1 + m)→ 1.

In particular, the first vertical arrow is surjective. The second vertical arrow is injective

since X̃ → X is a Galois cover. This shows that O×(X) = O×(X̃) = K×/(1 + m). In

particular, the boundary map O×(X)→ H1(X,O) vanishes.
We now move on to the case of general Y : We will show that the boundary map ∂ of the

exponential sequence

0→ H0(X × Y,O)→ H0(X × Y,O×)[ 1
p ]→ H0(X × Y,O×)

∂−→ H1
v (X × Y,O)

vanishes as well. This implies the desired result: We already know from Corollary 4.5 that
the first two terms identify with O(Y ) and O×(Y )[ 1

p ]. Using Lemma 3.14 again, we can

then compute in the étale topology that their quotient is O×(Y ) because H1
ét(Y,O) = 0.

To see that ∂ = 0, we can without loss of generality assume that (K,K+) = (K,OK):
Indeed, pullback along Spa(K,OK)→ Spa(K,K+) only changes the integral subrings, so the
comparison map H1

v (X×Y,O)→ H1
v (X×Y ×Spa(K,K+) Spa(K,OK),O) is an isomorphism.
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The idea is now to compare the boundary map of the exponential sequence for X and
X×Y via the pullback along X → X×Y for points in Y (K). This results in a commutative
diagram:

H0(X × Y,O×) H1
v (X × Y,O)

Map(Y (K),O×(X)) Map(Y (K), H1
v (X,O))

By Proposition 4.2, we know that

H1
v (X × Y,O) = H1

ét(X,Qp)⊗Qp
O(Y ).

This shows that the right vertical map can be identified with H1(X,Qp) tensored with the
evaluation map s : O(Y )→ Mapcts(Y (K),K). This is injective since Y is a reduced classical
rigid space, thus the right vertical map is injective. But the bottom map is = 0 by the case
of Y = Spa(K). Hence the top map vanishes, as we wanted to see. �

Finally, we turn to the remaining part of Lemma 2.14 (B), about the top morphism. We

need to compare étale and v-cohomology of O× on products of X with perfectoid spaces:

Proposition 4.12. Let F = O+a/p and n ∈ N; or F = O× and n ∈ {0, 1}.
1. Let X be a smooth qcqs rigid space and let Y be an affinoid perfectoid space over K.

Then

Hn
ét(X × Y,F) = Hn

v (X × Y,F).

2. Let Y be any spatial diamond over K. Let X̃ = lim←−i∈I Xi be a diamond which is a

limit of smooth qcqs rigid spaces over K with finite étale transition maps. Then

lim−→i
Hn
v (Xi × Y,F) = Hn

v (X̃ × Y,F).

Part 1 is proved in much greater generality in [12, Proposition 2.14], but we will in the
next section also need part 2, from which it is easy to deduce part 1 independently.

Proof. The proof will be completed in several steps:

Step 1. We first observe that if Y is any qcqs perfectoid space and S = lim←−Si is a profinite
space, then by Proposition 3.2, we can apply Lemma 3.8 to S × Y ∼ lim←−Si × Y to see that

Hn
ét(S × Y,F) = lim−→Hn

ét(Si × Y,F) = lim−→Map(Si, H
n
ét(Y,F)).

Step 2. When Y is affinoid perfectoid, then we have

lim−→Hn
ét(Xi × Y,F) = Hn

v (X̃ × Y,F).

Proof. Choose any element 0 ∈ I. By a Čech-argument, it suffices to prove the statement
after replacing X0 by a qcqs open U that admits a perfectoid (say, toric) cover X∞,0 ∼
lim←−Xj,0 → X0 with pro-finite-étale Galois group G = lim←−Gj .

Let Xj,i := Xj,0 ×X0
Xi and to simplify notation let Zj,i := Xj,i × Y . Furthermore, let

Z̃j := X̃ ×X0
Zj,0 = lim←−i Zj,i.

In this notation, our space X̃ × Y is Z̃0. In summary, we have a commutative diagram

Z̃∞ Z∞,0

Z̃0 Z0,0
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in which the left map is a pro-finite-étale G-torsor under a perfectoid space, and the top
morphism is a pro-finite-étale morphisms of perfectoid spaces.

Since Z̃∞ is perfectoid we have Hn
v (Z̃∞,O+/p)

a
= Hn

ét(Z̃∞,O+/p), and similarly for O×

by the exponential sequence of [14, Lemma 2.18]. We endow this with the discrete topology.
By Step 1, we then have

Hn
ét(Z̃∞ ×Gk,O+/p) = Mapcts(G

k, Hn
ét(Z̃∞,O+/p)).

It follows that the Čech-to-sheaf spectral sequence of Z̃∞ → Z̃0 is a Cartan–Leray spectral
sequence in the almost category

Hn
cts(G,H

m
ét (Z̃∞,O+/p))⇒ Hn+m

v (Z̃0,O+/p).

Since Z̃∞ = lim←−Z∞,i → Z∞,0 is a pro-finite-étale morphism of perfectoid spaces, we have

Hm
ét (Z̃∞,O+/p) = lim−→

i

Hm
ét (Z∞,i,O+/p) = lim−→

i

lim−→
j

Hm
ét (Zj,i,O+/p)

by Proposition 3.2. We deduce by [28, Proposition 1.2.5] that we now have for any n,m ≥ 0:

Hn
cts(G,H

m
ét (Z̃∞,O+/p)) = lim−→

i

lim−→
j

Hn(Gj , H
m
ét (Zj,i,O+/p)).

But these are the terms appearing in the usual étale Cartan–Leray sequence for Zj,i → Z0,i:

Hn(Gj , H
m
ét (Zj,i,O+/p))⇒ Hn+m

ét (Z0,i,O+/p).

Thus the abutment of the first sequence is = lim−→i
Hn+m

ét (Z0,i,O+/p), as we wanted to see.

The case of O× is similar, but instead using only the 5-term exact sequence

0→ H1
cts(G,O

×
(Z̃∞))→ H1

v (Z̃0,O
×

)→ H1
ét(Z̃∞,O

×
)G → H2

cts(G,O
×

(Z̃∞))

which by the above arguments is the colimit over i and j of

0→ H1
cts(Gj ,O

×
(Zj,i))→ H1

ét(Z0,i,O
×

)→ H1
ét(Zj,i,O

×
)Gj → H2

cts(Gj ,O
×

(Zj,i)).

This finishes the proof of Step 2. �

Step 3. Part 1 holds.

Proof. This follows from Step 2 as the special case of X̃ = X. �

Step 4. Part 2 holds for affinoid perfectoid Y .

Proof. It follows from part 1 that the left hand side of the statement of part 2 is equal to
lim−→Hn

ét(Xi × Y,F). Thus this follows from Step 2. �

Step 5. Part 2 holds for general spatial diamonds.

Proof. Any spatial diamond admits a cover Ỹ → Y by an affinoid perfectoid space Ỹ such

that all finite products Ỹ ×Y · · ·×Y Ỹ are affinoid perfectoid (e.g use [32, Propositions 11.5,
11.14 and Lemma 7.19]). Comparing the Čech-to-sheaf spectral sequence

Ȟn(Ỹ → Y,Hm
v (Xi ×−,F))⇒ Hn+m

v (Xi × Y,F)

to the sequence for Xi replaced by X̃, we deduce the result from Step 4. �

This finishes the proof of Proposition 4.12. �

Towards Lemma 2.14, we can use this to describe the cohomology sheaves:
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Lemma 4.13. Let X,Y be locally spatial diamonds over K with X(K) 6= ∅. Let τ be either
the étale or the v-topology and let F be a τ -sheaf on LSDK such that the pullback F → π∗F
of sheaves on Yτ along π : X × Y → Y is an isomorphism. Then the Leray sequence

0→ H1
τ (Y, π∗F )→ H1

τ (X × Y, F )→ R1πτ∗F (Y )→ 1

is a short exact sequence.

Proof. This is a standard argument that we learned from Gabber’s simplification of [8,
Lemma 5]: The full Leray 5-term exact sequence is of the form

0→ H1
τ (Y, π∗F )→ H1

τ (X × Y, F )→ R1π∗F (Y )→ H2
τ (Y, π∗F )→ H2

τ (X × Y, F ).

By assumption, the last map agrees with the pullback map

π∗ : H2
τ (Y, F )→ H2

τ (X × Y, F ).

Any point x ∈ X(K) now defines a splitting of π∗, showing that this map is injective. �

Proof of Lemma 2.14.(A)-(B). For part (A), we consider the a priori left exact sequence

1→ π♦ét∗O
×
1 → π♦ét∗O

× → π♦ét∗O
× → 1.

By Corollary 4.5 and Lemma 4.11, this gets identified with

1→ O×1 → O× → O
× → 1,

which is short exact. Hence the boundary map π♦ét∗O
× → R1π♦ét∗O

×
1 vanishes. This shows

the statement for the middle row. The other rows are completely analogous.
The first part of (B) was Corollary 3.16. To finish the proof of (B) it remains to prove

that the map

R1π♦ét∗O
× → R1π♦v∗O

×

is an isomorphism. We may prove this locally on PerfK,ét, and may therefore assume that
X(K) 6= ∅. By Lemma 4.11, we can then apply Lemma 4.13 to get an exact sequence

1→ H1
v (Y,O×)→ H1

v (X × Y,O×)→ R1π♦v∗O
×

(Y )→ 1.

It also applies for the étale topology, so we also get a short exact sequence

1→ H1
ét(Y,O

×
)→ H1

ét(X × Y,O
×

)→ R1π♦ét∗O
×

(Y )→ 1.

The first two terms of these sequences are isomorphic via the natural maps by Proposi-
tion 4.12.1. Thus the third terms are isomorphic. �

5. Proof of Main Theorem

At this point we have completed the proof of Lemma 2.16 and of (A)–(B) of Lemma 2.14.
We are left to prove Lemma 2.14.(C) and to explain how to deduce Proposition 2.15,

which is not completely formal from the diagram. Finally, we need to prove Corollary 2.9.
We can assume that X is connected. Fix a base point x ∈ X(K). We can then define the

universal pro-finite-étale cover from [14, §3.4]: This is the diamond X̃ over K defined as

π̃ : X̃ := lim←−
X′→X

X ′ → Spd(K)

where the limit ranges over connected finite étale covers (X ′, x′)→ (X,x) with x′ ∈ X ′(K)
a choice of lift of the base point x. This is a spatial diamond, and the canonical projection

X̃ → X is a pro-finite-étale torsor under the étale fundamental group π1(X,x) of X.
We first note that we have an analogue of Corollary 4.5 in the inverse limit:

Lemma 5.1. We have π̃∗O = O on PerfK,v, and similarly for O×1 , O×, O+ and O+a/pk.



DIAMANTINE PICARD FUNCTORS OF RIGID SPACES 25

Proof. We start with O+/pk: For this we deduce from Proposition 4.12.2 and Corollary 4.5:

O+/pk(X̃ × Y )
a
= lim−→O

+/pk(X ′ × Y )
a
= O+/pk(Y )

. The case of O follows by taking the limit over k and inverting p. The cases of O+, O×
and O×1 follow as these are subsheaves. �

We are finally equipped to prove that the Hodge–Tate sequence for O×1 is short exact:

Proof of Proposition 2.15. We consider the morphism of logarithm long exact sequences

π♦∗ O R1π♦τ∗µp∞ R1π♦τ∗O×1 R1π♦τ∗O R2π♦τ∗µp∞

(π∗O)♦ (R1πét∗µp∞)♦ (R1πét∗O×1 )♦ (R1πét∗O)♦ (R2πét∗µ
∞
p )♦

∼ ∼ ∼

for τ one of ét and v. For either topology, the first vertical arrow is an isomorphism by
Corollary 4.5. The second and fifth arrow are isomorphisms by Corollaries 3.19 and 4.8.

For the étale topology, also the fourth arrow is an isomorphism by Proposition 2.6.1, and
we conclude the first part by the 5-Lemma.

For the v-topology, by splicing diagram (4) into short exact sequences, we can still deduce
from Proposition 2.6.2 that there is a left-exact sequence

0→ (R1πét∗O×1 )♦ → R1π♦v∗O×1
HT log−−−−→ H0(X, Ω̃1

X)⊗K Ga.

We are left to prove right-exactness. For this it suffices to prove that the map

log : R1π♦v∗O×1 → R1π♦v∗O

is surjective. To show this, we first assume that K is algebraically closed, then we can
argue like in [14, §3.5] (see the discussion surrounding [14, diagram (10)]): For any affinoid
perfectoid Y , consider the pro-finite-étale Galois cover

X̃ × Y → X × Y

with group G := π1(X,x). By Lemma 5.1, we have H0
v (X̃×Y,O+) = O+(Y ). The Cartan–

Leray sequence thus combines with the logarithm to a commutative diagram:

(7)

Homcts(G,O×1 (Y )) H1
v (X × Y,O×1 )

Homcts(G,O(Y )) H1
v (X × Y,O).

log log

We aim to see that the right vertical map becomes surjective upon sheafication in Y . The
left morphism becomes surjective since log : O×1 → O is and since the maximal torsionfree
abelian pro-p-quotient of G = π1(X,x) is a finite free Zp-module [14, Corollary 3.12]. It
thus suffices to see that the bottom map is surjective: By Proposition 4.2.2.(ii) we have
H1
v (X ×Y,O) = H1

v (X,O)⊗O(Y ). Since Homcts(G,O(Y )) = Homcts(G,K)⊗K O(Y ), this
map is −⊗K O(Y ) applied to the same map in the case of Y = Spa(K),

Homcts(π1(X,x),K)→ H1
v (X,O),

which is an isomorphism since H1(X̃,O) = 0 by [14, Proposition 4.9].
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Returning to the case of general perfectoid K, consider the inverse system of finite sub-
extensions K ⊆ L ⊆ C, then there is base-change morphism of logarithm exact sequences

H1
v (X × YL,O×1 ) H1

v (X × YL,O) H2
v (X × YL, µp∞)

H1
v (X × YC ,O×1 ) H1

v (X × YC ,O) H2
v (X × YC , µp∞)

log ∂L

log

Let x be an element in the middle of the top row, then by the algebraically closed case,
the image of x in the bottom row can be lifted along log after passing to an étale cover of
YC . Using that YC,ét-qcqs = 2- lim−→YL,ét-qcqs, we can assume that this étale cover comes via

pullback from YL. Replacing YL by this cover, we see that the image of ∂L(x) in the bottom
row vanishes. But the rightmost vertical map becomes an isomorphism in the colimit over L
by [32, Proposition 14.9]. Hence ∂L(x) vanishes for L large enough, and we find the desired
lift on the étale cover YL → Y . �

Finally, we need to see that (R2πét∗O×1 )♦ → R2π♦v∗O×1 is injective:

Proof of Lemma 2.14.(C). We argue as in the last proof, but in one degree higher: Let

C1 := coker(log : R1πét∗O×1 → R1πét∗O)♦,

C2 := coker(log : R1π♦v∗O×1 → R1π♦v∗O).

By Propositions 2.15 and 2.6, these fit into a commutative diagram

R1π♦v∗O×1 R1π♦v∗O C2

(R1πét∗O×1 )♦ (R1πét∗O)♦ C1,

in which the first two vertical maps both have cokernel Ω̃1
X ⊗ Ga. As the second vertical

map is injective, this shows that the natural map C1 → C2 is an isomorphism. Continuing
the outer diagram in (4) further to the right, these terms fit into a long exact sequence

0 C2 R2π♦v∗µp∞ R2π♦v∗O×1 R2π♦v∗O R3π♦v∗µp∞

0 C1 (R2πét∗µp∞)♦ (R2πét∗O×1 )♦ (R2πét∗O)♦ (R3πét∗µp∞)♦

∼ ∼ ∼

in which the first, second and last vertical arrows are isomorphisms by Corollary 4.9. The
fourth arrow is injective by Proposition 4.4. It follows that the middle arrow is injective. �

This finishes the proof of Lemmas 2.14 and 2.16. As explained in Section 2.3, this in turn
completes the proof parts 1 and 2 of Theorem 2.7.

To get the partial splitting in part 3, we first introduce some notation: Let

A := H0(X, Ω̃1
X)⊗K Ga.

We now use that the exponential exp : pO+ → Gm defines a partial inverse to log on the
subspace 1 + pO+ ⊆ Gm. Moreover, for varying affinoid perfectoid Y , the natural maps
H1
v (X,O+)⊗K+ O+(Y )→ H1

v (X × Y,O+) induce a morphism

H1
v (X,O+)⊗G+

a → R1π♦v∗pO+.
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Let A+ ⊆ A be its image under R1π♦v∗pO+ → R1π♦v∗O → A, then these combine to a
commutative diagram:

0 Pic♦X,ét Pic♦X,v A

0 H1
ét(X,O+)⊗G+

a H1
v (X,O+)⊗G+

a A+

HT log

HT+

exp

Since the image of H1
v (X,O+)→ H1

v (X,O) is an almost finite free K+-module, we can find

a splitting s : H0(X, Ω̃)→ H1
v (X,O) that induces a splitting of HT+, and thus of HT log.

The part of 2 about tangent spaces also follows from the bottom row of the diagram.
This finishes the proof of the Diamantine Picard Comparison Theorem 2.7. �

As usual, Theorem 2.7 in fact yields a precise description of the Picard group:

Corollary 5.2. Let Y be a perfectoid space over K and assume that the rigid Picard functor
PicX,ét is represented by an adic space G. Then any x ∈ X(K) defines an isomorphism

Picét(X × Y ) = Picét(Y )×G(Y ).

Proof. This follows from Theorem 2.7 and Lemma 4.13 which applies by Corollary 4.5. �

Proof of Corollary 2.9. 1. By Theorem 2.7.1-2, the sheaf (PicX,ét)
♦ is the kernel of a mor-

phism of v-sheaves on PerfK , hence it is itself a v-sheaf.
2. Let us for simplicity write Pic♦X,ét for the Picard functor defined on all of LSDK,ét, and

similarly for the v-topology. We claim that for rigid Y , the natural sequence

1→ Pic♦X,ét(Y )→ Pic♦X,v(Y )
HT log−−−−→ H0(X, Ω̃1

X)⊗K O(Y )

is still left-exact. It then follows that Pic♦X,ét is still the kernel of HT log on rigid spaces.
But HT log is a morphism of v-sheaves, and thus its kernel is a v-sheaf.

To see that the sequence is left-exact, we study the following commutative diagram:

1 H1
ét(Y,O×) H1

ét(X × Y,O×) Pic♦X,ét(Y ) 1

1 H1
v (Y,O×) H1

v (X × Y,O×) Pic♦X,v(Y ) 1

0 H0(Y, Ω̃1
Y ) H0(X × Y, , Ω̃1

X×Y ) H0(X, Ω̃1
X)⊗O(Y ) 0

HT log HT log HT log

Here the first two columns are the left exact Hodge–Tate logarithm sequences [14, The-
orem 1.3] associated to the rigid spaces Y and X × Y , respectively. The first two rows
are the exact sequences from Lemma 4.13. The bottom row is also exact, since

Ω1(X × Y ) =
(
Ω1(Y )⊗K O(X)

)
⊕
(
Ω1(X)⊗K O(Y )

)
and O(X) = K. The leftmost HT log in the diagram becomes surjective after étale
sheafification in Y . It follows from a diagram chase that also the third column is exact.

3. Clear from Theorem 2.7.1.
4. By part 2, if Y ′ → Y is a pro-étale perfectoid cover of a rigid space, we have descent for

étale line bundles along X × Y ′ → X × Y . One also has v-descent for maps into G.
5. When Pic♦X,v is representable by a rigid group, then the short exact sequence (3) in

Theorem 2.7.2 expresses Pic♦X,ét as the kernel of a morphism of rigid groups, hence

Pic♦X,ét is itself represented by a rigid group.
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To see the converse, let A+ be the bounded open subgroup of A = H0(X, Ω̃1
X)⊗K Ga

described in Theorem 2.7.3 and consider for any n ∈ N the short exact sequence

0→ PicX,ét → Pic
(n)
X,v → p−nA+ → 0

defined by the fibre of (3) over the open subgroup p−nA+. Then we have

PicX,v = ∪n∈NPic
(n)
X,v,

so it suffices to prove that each Pic
(n)
X,v is represented by a rigid space. For any n we have

a morphism of short exact sequences of v-sheaves, exact in the étale topology

0 PicX,ét Pic
(n)
X,v p−nA+ 0

0 PicX,ét Pic
(0)
X,v A+ 0.

[pn] [pn] ·pn∼

By Theorem 2.7.3, the bottom sequence is split. In particular, the middle term is repre-
sented by a (smooth) rigid group variety if and only if the first term is.

By [32, Lemma 15.6] any diamond that is étale over a rigid space comes from a rigid
space, so it suffices to prove that the middle arrow is an étale morphism of diamonds.

To prove this, we may work v-locally and assume that K is algebraically closed. By
the long exact sequence of π♦ét∗, the kernel of the left vertical map is R1π♦ét∗µpn which by
Corollary 4.8 is represented by the finite étale rigid group Gn := H1

ét(X,µpn). It follows

from the diagram that then also the middle vertical map is an étale torsor under Gn. �

5.1. Translation-invariant Picard functors. If X = A is a proper rigid group variety,
i.e. an abeloid variety, then there is a variant of the Picard functor that is frequently used,
for example by Bosch–Lütkebohmert [3, §6]: the translation-invariant Picard functor. We
finish this section by noting that the Diamantine Picard Comparison Theorem easily implies
a translation-invariant version. We will use this in [11] to prove a uniformisation result for
abeloids.

Definition 5.3. Let A be a connected smooth proper rigid group. Denote by π1, π2,m :
A×A→ A the two projection maps and the group operation, respectively. For any rigid or
perfectoid space Y , we denote by Picτét(A× Y ) the kernel of the map

π∗1 + π∗2 −m∗ : Picét(A× Y )→ Picét(A×A× Y ).

The translation-invariant Picard functor PicτA of A is defined as the kernel of the morphism

π∗1 + π∗2 −m∗ : PicA → PicA×A.

We analogously define the translation invariant diamantine Picard functor Pic♦τA,ét ⊆ Pic♦A,ét.

By duality theory of abeloids, developed by Bosch–Lütkebohmert [3, §6], the functor
PicτA is represented by an abeloid variety A∨ that is called the dual abeloid. We deduce:

Corollary 5.4. We have Pic♦τA,ét = (PicτA)♦ and this functor is represented by A∨♦. In

particular, for any perfectoid space Y over K, we have Picτét(A× Y ) = Pic(Y )×A∨(Y ).

Proof. The first statement follows from Theorem 2.7.1 by exactness of −♦. The last part
follows from Lemma 4.13 which shows that specialisation at 0 ∈ A(K) defines an isomor-

phism Picét(A×Y ) = Pic(Y )×Pic♦A(Y ). The same holds for A replaced by A×A. We get
the desired statement by comparing kernels on both sides of the maps in Definition 5.3. �
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Appendix A. Lemmas on complexes of Banach algebras

Let R be any ring and let $ ∈ R be any element. We recall that an R-module M is said
to have bounded $-torsion if M [$∞] := ∪k∈NM [$k] is equal to M [$n] for some n ∈ N.

Lemma A.1. If A→ B → C → D is an exact sequence of R-modules in which A and D are
killed by $n for some n ∈ N and B has bounded $-torsion, then C has bounded $-torsion.

Proof. This is an elementary diagram chase: Choose n large enough such that B[$∞] =
B[$n]. We claim that C[$∞] = C[$2n]. Let x ∈ C[$N ] for some N . Then $nx lifts to an
element y of B, and $Ny goes to $N+nx = 0 in C, hence lifts to A. Since A is killed by $n,
this implies $N+ny = 0. Since B[$∞] = B[$n], this shows $ny = 0, hence $2nx = 0. �

Lemma A.2. Let C•1 → C•2 → C•3 be a short exact sequence of complexes of R-modules.
Suppose that for each n ∈ Z, the module Hn(C•3 ) has bounded $-torsion and Hn(C•2 ) is
killed by $k for some k ∈ N. Then Hn(C•1 ) has bounded $-torsion.

Proof. We apply Lemma A.1 to the long exact sequence of cohomologies. �

Let (K,K+) be any non-archimedean field. We now specialise to the setting that R = K+

and $ ∈ K+ is a pseudo-uniformiser.

Lemma A.3. Let C• be a bounded complex of $-torsionfree $-adically complete K+-
modules. Suppose that C•[ 1

$ ] is a complex of K-Banach modules such that Hn(C•[ 1
$ ])

is finite-dimensional for all n ∈ Z. Then:

1. Hn(C•) has bounded $-torsion.
2. For any $-torsionfree K+-module S, we have

Hn(C•⊗̂K+S) = Hn(C•)⊗̂K+S

where ⊗̂ denotes the $-adically completed tensor product.

Proof. By [27, §II.5 Lemma 1], there exists a perfect complex P • of K-vector spaces and
a quasi-isomorphism f : P • → C•[ 1

$ ]. Choosing K+-lattices in each Pn and rescaling if

necessary, we can find a perfect complex P+,• of K+-modules such that P+,•[ 1
$ ] = P • and

such that f admits a K+-model

f+ : P+,• → C•.

Let L be the mapping cone of f+, then we have a short exact sequence of K+-complexes

0→ C• → L→ P+,•[1]→ 0.

Since f is a quasi-isomorphism, L[ 1
$ ] is an exact complex of K-Banach modules, so we

have Hn(L)[ 1
$ ] = 0. By a standard argument, it now follows from Banach’s Open Mapping

Theorem that Hn(L) has bounded $-torsion for all n ∈ N. (We learnt this argument from
the proof of [29, Proposition 6.10]. See e.g. [16, Lemma A.3.1] for a proof of the statement.)

The modules Hn(P+,•) are finitely presented K+-modules, hence they also have bounded
$-torsion. Therefore, Lemma A.2 applies and shows part 1.

For part 2, we note that S is a flat K+-module. The result therefore follows from part 1
by [16, Lemma A.3.6], or alternatively [17, Proposition A.3.1]. �
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[36] Evan Warner. Adic moduli spaces. PhD thesis, Stanford, https://searchworks.stanford.edu/view/12135003,

2017.


	1. Introduction
	1.1. The étale diamantine Picard functor
	1.2. The v-Picard functor
	1.3. Applications to non-abelian p-adic Hodge theory
	1.4. The topological torsion Picard functor is representable
	Acknowledgements
	Notation

	2. The diamantine Picard functors
	2.1. Definition of diamantine and rigid Picard functors
	2.2. The Diamantine Picard Comparison Theorem
	2.3. Outline of proof strategy

	3. A rigid approximation lemma
	4. Cohomology of products of rigid with perfectoid spaces
	4.1. Cohomology of O
	4.2. Cohomology of O

	5. Proof of Main Theorem
	5.1. Translation-invariant Picard functors

	Appendix A. Lemmas on complexes of Banach algebras
	References

