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Abstract. For a smooth projective curve X over Cp and any reductive group G, we show that the moduli
stack of G-Higgs bundles on X is a twist of the moduli stack of v-topological G-bundles on Xv in a canonical
way. We explain how a choice of an exponential trivialises this twist on points. This yields a geometrisation
of Faltings’ p-adic Simpson correspondence for X, which we recover as a homeomorphism between the points
of moduli spaces. We also show that our twisted isomorphism sends the stack of p-adic representations of
π1(X) to an open substack of the stack of semi-stable Higgs bundles of degree 0.

1. Introduction

Let K be any algebraically closed non-archimedean field over Qp. Let X be a connected smooth projective
curve overK. The starting point of this article is Faltings’ p-adic Simpson correspondence [Fal05, Theorem 6].
Following [Heu23, Theorem 1.1], this is an equivalence of categories
(1.0.1) S : {vector bundles on Xv} ∼−→ {Higgs bundles on X}
depending on the choice of a B+

dR/ξ
2-lift X of X and the datum of an exponential for K. Here we regard X

as an adic space over Qp and Xv is the v-site of the diamond associated to X as defined by Scholze [Sch22].
The choice of the lift X of X can be interpreted as a splitting of a Hodge–Tate sequence, and there is a

canonical such choice in arithmetic settings. In contrast, the exponential is a more mysterious datum: It is
defined as a continuous splitting of the p-adic logarithm 1 +mK → K, and there is no canonical such choice.

1.1. The p-adic Simpson correspondence as a twisted isomorphism of moduli spaces. The goal
of this article is to upgrade the p-adic Simpson correspondence (1.0.1) to a “twisted isomorphism” between
analytic moduli spaces, in a way that explains all choices in a geometric fashion. In order to explain what
we mean by this, we first state our main results in the special case of GLn in terms of coarse moduli spaces:
Let n ∈ N and consider the sheaves on the site PerfK,v of perfectoid spaces over K with the v-topology

Bunn,v : sheafification of
(
T 7→ {v-vector bundles on X × T of rank n}/ ∼

)
,

Hign : sheafification of
(
T 7→ {Higgs bundles on X × T of rank n}/ ∼

)
.

We can use these to endow the sets of isomorphism classes Bunn,v(K) and Hign(K) of either side in (1.0.1)
with natural topologies, by testing on perfectoid spaces associated to profinite sets. Moreover, [Heu22d,
§1.5] has constructed natural “Hitchin maps” to the classical Hitchin base A := ⊕ni=1H0(X,Ω⊗iX (−i))⊗KGa,
considered as an adic space:

H̃ : Bunn,v → A← Hign : H
We can now state the first version of our main result: Let X be a flat B+

dR/ξ
2-lift of X.

Theorem 1.1.1 (Theorem 7.4.2). There is a natural Zariski-constructible v-sheaf HX → A that induces a
canonical isomorphism

S : Bunn,v ×A HX
∼−→ Hign ×A HX.

Any choice of exponential for K induces a section Exp : A(K)→ HX(K) that induces a homeomorphism
Bunn,v(K) ∼−→ Hign(K).

This homeomorphism is a close p-adic analogue of a Theorem of Simpson in complex geometry, see §1.7.
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In fact, we can be more precise: Let π : Z → A be the spectral curve, considered as an adic space. Then
HX is a torsor under P[p∞] := ν∗R1πét∗µp∞ on Av. Both Bunn,v and Hign receive natural P[p∞]-actions.
Theorem 1.1.2. There is a natural isomorphism of v-sheaves over the Hitchin base A

HX ×P[p∞] Bunn,v ∼−→ Hign.

This exhibits Bunn,v as a twist of Hign, giving a precise technical meaning to the “twisted isomorphism”.
To give a third incarnation, assume that the genus of X is ≥ 2 and let A◦ ⊆ A be the regular locus, i.e. the
dense Zariski-open subspace where the fibre π : Z◦ → A◦ of π is smooth. Let P := Pic♦

Z◦|A◦ be the v-sheaf
associated to the relative Picard functor of π. Let Bun◦n,v and Hig◦n be the fibres of A◦ under H̃ and H.

Theorem 1.1.3 (Theorem 8.6.2). (1) The morphisms H : Hig◦n → A◦ and H̃ : Bun◦n,v → A◦ are
P-torsors. As such, the former is a split P-torsor, whereas the latter is non-split.

(2) Hig◦n and Bun◦n,v are represented by smooth rigid spaces. The restriction HX|A◦ét
is locally constant.

(3) The fibre over A◦ of the isomorphism S in Theorem 1.1.1 is an isomorphism of smooth rigid spaces.
This explains the first instance of our main results, formulated in terms of coarse moduli spaces. But

in fact, our setup is more general: Instead of working with GLn, i.e. with vector bundles, we allow general
reductive groups G. Moreover, we can work with moduli stacks instead of coarse moduli spaces.

1.2. Twisting for the moduli stack of v-topological G-torsors. We now explain the main results of
this article in full generality and in more detail. Let G be a reductive group over K. Generalising from the
case of G = GLn of vector bundles of rank n, we work with the stack of v-G-torsors

BunG,v : T 7→ {G-torsors on (X × T )v}
over Spa(K)v, defined by sending any perfectoid space T → Spa(K) to the groupoid of G-torsors for the
v-topology on the adic space X × T . Here we interpret G as an adic group over Spa(K), hence as a v-sheaf.

Based on the preparations from [Heu22d], there is also a good notion of G-Higgs bundles on X × T : Let
Ω̃ be the (−1)-Tate twist of the pullback pr∗X Ω1

X|K along the projection prX : X ×T → X. Then a G-Higgs
bundle onX×T is a pair (E, θ) consisting of aG-torsor E on (X×T )ét and a section θ ∈ H0(X×T, ad(E)⊗Ω̃),
where ad(E) is the adjoint bundle of E. By [Heu22d, Theorem 1.4], the functor fibred in groupoids

H igG : T 7→ {G-Higgs bundles on (X × T )ét}
is then a small v-stack on Spa(K)v, as is BunG,v. By [Heu22d, §1.5], both of these admit a Hitchin morphism

BunG,v → A←H igG

of v-stacks, where A is the Hitchin base for G. The goal of this article is to compare these two morphisms.
Following Ngô [Ngô06], the regular centralizer of G induces a commutative relative group scheme

J → X ×A
which again we may view as a rigid space. It has the fundamental property that for any perfectoid space T
and any Higgs bundle (E, θ) on X × T with associated morphism b := H(E, θ) : T → A, the base-change
Jb → X × T admits a natural action on (E, θ) via a homomorphism of adic groups over X × T
(1.2.1) Jb → Aut(E, θ).

Our first result is that a similar construction is possible on the “Betti side”, i.e. for BunG,v: Let V be a
v-topological G-torsor on X × T . Generalising a construction of Rodríguez Camargo [RC22], we show that
V can be endowed with a canonical Higgs field θV ∈ H0(X ×T, ad(V )⊗ Ω̃). We show that Aut(V )→ X ×T
is a smooth relative adic group, and that θV induces a canonical homomorphism of adic groups over X × T
(1.2.2) Jb → Aut(V ).
It follows from this that we can twist both G-Higgs bundles and v-topological G-torsors on X × T in the
fibre of b ∈ A(T ) with Jb-torsors. This is what we will use to set up the comparison of moduli stacks.
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1.3. The twisted isomorphism of moduli stacks. The fundamental conceptual idea behind our con-
struction is to use the phenomenon of “abelianisation”: Roughly, we will reduce the non-abelian Hodge
theory of G on X to the relative Hodge theory of the commutative relative group J → X ×A.

In the case of G = GLn, this is related to the BNR-correspondence, which relates Higgs bundles on X to
line bundles on the spectral curve Z. Indeed, in this case, J is given by ResZ|X×AGm. If πT : ZT → X × T
denotes the base-change along b : T → A, then Jb-torsors are in this case equivalent to line bundles on ZT .

To obtain such a relative Hodge theory for J , we develop a general theory of smooth relative adic groups
over adic spaces like X × T . We then show that the topologically p-torsion subsheaf Ĵ := H om(Zp, J)→ J
is represented by an open subgroup of J → X×A. For any morphism b : T → A, we denote the base-change
by Ĵb → X × T . For τ ∈ {ét, v}, let Pτ → A be the Picard v-stack sending any perfectoid space b : T → A
to the groupoid of Ĵb-bundles on (X×T )τ . We set P := Pét. The canonical J-actions in (1.2.1) and (1.2.2)
define natural P-actions on both H igG and BunG,v. Our fundamental technical result on J is now:

Theorem 1.3.1 (Proposition 6.1.8). There is a short exact sequence of Picard stacks on PerfK,v:
1→P →Pv → AJ,Ω → 0

where AJ,Ω is the abelian v-sheaf defined by prA,∗(Lie J ⊗ Ω̃) for the projection prA : X ×A→ A.

Here we can think of AJ,Ω as being the Hitchin base for the commutative relative adic group J , and we
can think of the morphism Pv → AJ,Ω in Theorem 1.3.1 as an analogue of the Hitchin morphism for Ĵ .

Following Chen–Zhu [CZ15], there is a canonical section τ : A→ AJ,Ω. The key definition is now:

Definition 1.3.2. Let H → A be the v-stack defined as the fibre product

H A

Pv AJ,Ω.

τ

As a consequence of Theorem 1.3.1, there is a natural action of P on H making it a P-torsor. We can
now state our main theorem, the p-adic Simpson correspondence as a twisted isomorphism of moduli stacks:

Theorem 1.3.3 (Theorem 6.2.5). There is a canonical and functorial equivalence of v-stacks
S : H ×P H igG → BunG,v.

In other words, this exhibits BunG,v as a twist of H igG in a natural way. We emphasize that this
isomorphism does not depend on any choices, in contrast to the more classical formulation of the p-adic
Simpson correspondence (1.0.1). Instead, we can explain these choices in a geometric fashion, as follows.

1.4. The constructible sheaf associated to a lift X, and the exponential. To explain the role of the
choices in Theorem 1.1.1, let us for simplicity switch back to coarse moduli spaces. Suppose we are given a
B+

dR/ξ
2-lift X of X. This defines a Faltings extension for X that we can use to define a canonical splitting

sX : A→ BunLie J,v. The v-sheaf HX used in Theorems 1.1.1 and 1.1.2 is then defined as the fibre product

HX A

Bun
Ĵ,v

BunLie J,v.

sX

log

At the small expense of requiring the additional datum of X, this gives a “finer” comparison between the
two moduli spaces: Indeed, we show that HX → A is a constructible sheaf.

To explain the role of the exponential, let now G = GLn and let f : Z → A be the spectral curve for
GLn. Let Ĝm be the open unit disc inside Gm. The key result about the exponential is the following:
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Theorem 1.4.1 (Corollary 7.0.2). Let Λ = R1fv∗Zp be the étale cohomology of the spectral curve. There is
a canonical isomorphism ψ : R1fv∗ Lie J ∼−→ Λ⊗Zp Ga that induces a Cartesian diagram of v-sheaves on A

HX A

Λ⊗Zp Ĝm Λ⊗Zp Ga.

ψ◦sX

log

Corollary 1.4.2. Let S = Spa(R,R+) be any strictly totally disconnected space. By an exponential for S,
we mean a continuous splitting Exp of the logarithm log : 1 +R◦◦ → R. Then any exponential for S induces
a section of HX(S)→ A(S). In particular, it induces a bijection, natural in Exp,

{G-torsors on (X × S)v}/∼ ∼−→ {G-Higgs bundles on X × S}/∼ .
We deduce Theorem 1.1.1.(2) by applying this to profinite sets S and taking a condensed perspective.

1.5. Representation variety. While v-vector bundles on rigid spaces are now objects of independent
interest, Faltings’ original motivation for (1.0.1) was that it gives rise to a natural fully faithful functor

(1.5.1)
{ continuous representations

π1(X,x)→ GLn(K)
}
↪→
{ vector bundles
of rank n on Xv

}
S−→
∼

{ Higgs bundles
of rank n on X

}
where π1(X,x) is the étale fundamental group of X for some fixed base point x ∈ X(K). Describing the
essential image of (1.5.1) is a major open problem in p-adic non-abelian Hodge theory. In [Heu22b], it
was solved for n = 1, and the proof hinged on the geometric study of moduli spaces on either side. We
therefore believe that the results of this article will help to study the problem for n > 1. As a step in this
direction, we construct a moduli stack RepG of continuous G-representations of π1(X,x) and an embedding
RepG → BunG,v which geometrises the first functor in (1.5.1) for G = GLn. We then prove:
Theorem 1.5.2 (Theorem 9.2.1). The natural map RepG → BunG,v is an open immersion.

We deduce that the sought-for condition on Higgs bundles describing the essential image of Faltings’
functor cuts out an open sub-v-stack in the moduli space H igsst,0

G of semi-stable Higgs bundles of degree 0
(Proposition 9.3.2). That said, we caution that it is known in the easier special case of G = Gm that the
essential image of the twist of RepG is in general strictly smaller than H igsst,0

G , see [Heu22b, Theorem 1.1].

1.6. Comparison to the small p-adic Simpson correspondence. In contrast to Faltings’ approach to
(1.0.1), our construction of the twisted isomorphism Theorem 1.3.3 is “global”, in the sense that it is not
obtained from gluing local isomorphisms. Indeed, the existence of the canonical Higgs field, or equivalently
the abelianisation map (1.2.2), is essentially the only place in the proof of Theorem 1.3.3 where we use input
from local non-abelian Hodge theory. In particular, we do not use any analogue of Faltings’ “global p-adic
Simpson correspondence of small objects” depending on the choice of an integral lift X of X but not on an
exponential, as described in [Fal05, Theorem 5] and studied in detail in [AGT16]. In this sense, we think of
this small global correspondence and Theorem 1.3.3 as two independent results of independent interest.

That being said, the two kinds of correspondences can be compared to each other when X is proper:
Indeed, the small p-adic Simpson correspondence can be interpreted as an isomorphism of moduli stacks of
small objects [AHL23, Theorem 1.1]. From our perspective, when X is a proper curve, this is obtained by
restricting the isomorphism Theorem 1.3.3 to the largest open subdisc A+ ⊆ A of the Hitchin base that maps
via Theorem 1.4.1 to the open disc of Λ⊗Ga where the p-adic exponential converges. This condition yields
a canonical splitting of HX over A+, explaining why no choice of exponential is required in this context.

One interesting aspect of the small p-adic Simpson correspondence is that it has an arithmetic counterpart
for smooth rigid spaces over discretely valued p-adic fields, classifying small v-vector bundles in terms of small
“Higgs–Sen modules”, see [LZ17, §2][Tsu18, §15][He22][MW22, §3][AHL23, §5]. It would be interesting to
see if this also has a geometric incarnation in terms of moduli spaces, with the arithmetic Hitchin morphism
defined by spectral data of the Sen operator (see [AHL23, §5.5]) playing the role of the Hitchin morphism.
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1.7. Comparison to non-abelian Hodge theory over C and Fp. Following the pioneering work of
Faltings [Fal05], due to its relation to representations of π1(X,x) described in (1.5.1), the p-adic Simpson
correspondence (1.0.1) is regarded as a p-adic analogue of the complex non-abelian Hodge correspondence
of Corlette and Simpson: We recall that for a smooth projective variety Y over C, this is an equivalence of
categories between the finite dimensional C-linear representations of π1(Y ) and the category of semi-stable
Higgs bundles on Y with vanishing rational Chern classes [Sim92]. Simpson has shown in [Sim94] that
this induces a homeomorphism between the natural complex analytic moduli spaces on either side, which is
however not complex analytic. Moreover, he also gives a generalisation from GLn to any reductive G.

Not unlike the step from [Sim92] and [Sim94], the premise of the present article is to study to what
extent the p-adic Simpson correspondence (1.0.1) can be understood in terms of moduli spaces. From this
perspective, Theorem 1.1.1.(2) yields a very close analogue of the complex situation: There are natural
p-adic analytic moduli spaces for either side, and there is a homeomorphism between K-points, but this
homeomorphism is not p-adic analytic (by Theorem 1.1.3). Surprisingly, however, the situation seems to be
better behaved than over C, as there is additionally a twisted isomorphism between the two moduli spaces
as in Theorem 1.1.1.(1) and Theorem 1.3.3. These appear to have no analogue in the complex setting.

Instead, Theorem 1.1.1 is reminiscent of a result in mod p non-abelian Hodge theory due to Groechenig
[Gro16, Theorem 3.29], while Theorem 1.3.3 is inspired by the twisted isomorphism between the de Rham
stack and the Higgs stack in the mod p theory, due to Chen–Zhu [CZ15, Theorem 1.2]. This seems to hint
at a relation between the moduli theoretic aspects of the p-adic and the mod p theory, yet to be discovered.

In complex and mod p algebraic geometry, the moduli space of Higgs bundles and the Hitchin fibration
are much-studied objects that are part of a very active area of research, for example in the context of the
geometric Langlands program, especially the fundamental lemma, or in the context of the P=W conjecture.
It is therefore important to understand the relation of our v-stack H igG to its algebraic counterpart, the
algebraic stack H igalg

G of algebraic Higgs bundles on X. We prove that the relation is as close as one could
hope for: Let (−)♦ be the diamondification functor from algebraic stacks over K to v-stacks (8.4.5).

Theorem 1.7.1 (Theorem 8.4.6). There is a canonical isomorphism of v-stacks (H igalg
G )♦ = H igG.

Hence H igG and its Hitchin fibration are essentially algebraic objects, and one can use classical results like
the BNR-correspondence to study them. This provides the final ingredient for the proof of Theorem 1.1.3.

On the other hand, this opens up new ways to study the complex moduli space of Higgs bundles from a
p-adic perspective, where new phenomena like Theorem 1.1.2 occur. Our proof of Theorem 1.7.1 relies on a
perfectoid GAGA result for vector bundles on curves, Theorem 8.1.1, that is of independent interest.

1.8. Structure of the article. In §3, we introduce the logarithm of commutative relative adic groups and
use it to construct a relative Hodge–Tate sequence. In §4, we define the canonical Higgs field on v-G-bundles
via the local p-adic Simpson correspondence. In §5, we construct the twisting action on the stacks of G-
Higgs bundles and v-G-torsors (§1.2). §6 proves Theorem 1.3.3, the twisted isomorphism between moduli
v-stacks. In §7, we prove Theorem 1.4.1 and establish the homeomorphism between topological moduli
spaces, Theorem 1.1.1. In §8, we prove Theorem 1.7.1 and deduce the structure of the Hitchin fibration over
the regular locus. Finally, §9 is devoted to the proof of Theorem 1.5.2 about the v-stack of representations.
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2. Notation, conventions and recollections

2.1. Setup. Let K be a non-archimedean field extension of Qp. Let OK be its ring of integers and let mK
be its maximal ideal. Fix any ring of integral elements K+ ⊆ OK . In this article, by a rigid space over
K we mean an adic space locally of finite type over Spa(K,K+) in the sense of Huber. For any locally of
finite type scheme S over K, we denote by San its rigid analytification, considered as an adic space over
Spa(K,K+). We will often drop K+ from notation when this is clear from the context.

Let G be a rigid group over K and LieG the Lie algebra of G, this is a finite dimensional K-vector space.
Let g := (LieG⊗K A1)an be the affine space over K associated to LieG, considered as an adic space.

From §5 onwards, we will assume that K is algebraically closed and that G is connected reductive.
We use perfectoid spaces in the sense of [Sch12]. We denote by PerfK the category of affinoid perfectoid

spaces T over K. When we endow it with the v-topology, we obtain a site PerfK,v. For any adic space Y
over K, Scholze defines an associated locally spatial diamond Y ♦ in [Sch22, §15], which we may regard as a
sheaf on PerfK,v. On all categories of adic spaces that we consider, this “diamondification” functor Y 7→ Y ♦

will be fully faithful. We will therefore often switch back and forth freely between adic spaces and their
associated diamonds. For any adic space Y , let us denote by Yv the site of perfectoid spaces over Y endowed
with the v-topology. We sometimes also consider the “big étale site” YÉt consisting of all perfectoid spaces
over Y endowed with the étale topology. There is then a natural morphism of sites µ : Yv → YÉt.

Let Y be any locally spatially diamond, then we denote by Yét the étale site of [Sch22, Definition 14.1].
There exists a canonical morphism of sites νY : Yv → Yét that we often simply denote by ν. Given a v-sheaf
F on Yv, we sometimes abusively denote F by the étale sheaf ν∗F when this is clear from the context.

2.2. Twists by torsors. We briefly review the notion of twists and contracted products, and refer to [Bre90,
§2] for some more background. Let C be any site and let G, H, K be any sheaves of groups on C.

Definition 2.2.1. A (right) G-torsor on C is a sheaf E on C with a right-action E×G → E such that locally
on C, there is a G-equivariant isomorphism G ∼−→ E, where G acts on itself by translation on the right.

Definition 2.2.2. Let E be any G-torsor on C and let V be any sheaf on C with a left-action by G. The
twist of V by E is the quotient sheaf E ×G V := (E × V )/G on C for the left-action g · (e, v) := (eg−1, gv).

In general, the twist does not itself have a G-action, unless E is equipped with further structure:

Definition 2.2.3. A (G,H)-bitorsor is a sheaf P in T with a left action of G and a right action of H,
commuting with each other, such that P is an H-torsor and the G-action G → AutH(P) is an isomorphism.

Definition 2.2.4 ([Bre90, §2.3]). Let Q be an (H,K)-bitorsor. The twist P×HQ is also called the contracted
product. The left action of G on P and the right action of K on Q make this a (G,K)-bitorsor in T .

In general, any G-torsor P is a bi-torsor under (Aut(P),G), and if G is abelian, we can identify Aut(P)
with G. In particular, if G = H = K are abelian, the contracted product of two G-torsors is again a G-torsor.

2.3. G-bundles. Let Y be a sousperfectoid space and τ ∈ {ét, v}. We regard G as a diamond over Spa(K),
hence it represents a sheaf on Yτ . There are then two equivalent notions of G-bundles on Yτ :

Definition 2.3.1. (1) By a (cohomological) τ -G-bundle on Yτ , we shall mean a right G-torsor on Yτ :
Explicitly, this is a sheaf E on Yτ with a right G-action E×Y G→ E such that τ -locally on Y , there
is a G-equivariant isomorphism G ∼−→ E. We also refer to étale G-bundles simply as G-bundles.

(2) On the other hand, a geometric τ -G-bundle on Y is a morphism of v-sheaves E → Y on PerfK with
a left G-action E ×G→ E over Y such that there is a τ -cover Y ′ → Y in Yτ over which there is a
section Y ′ → E that induces a G-equivariant isomorphism G× Y ′ ∼−→ E ×Y Y ′.
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Proposition 2.3.2 ([SW20, Theorem 19.5.1], [Heu22a, §3.3]). For any geometric τ -G-bundle E → Y , the
sheaf of sections Y → E over Y is a (cohomological) τ -G-bundle, inducing an equivalence of the two notions.

Definition 2.3.3. For any G-bundle E on Yτ , we denote by ad(E) the adjoint bundle associated to E,
defined as the vector bundle ad(E) := E ×G g on Yv where g is the Lie algebra with its adjoint action by G.

2.4. Smoothoid spaces. Next, we recall smoothoid spaces from [Heu22d, §2]. For any d ∈ N, let Td :=
Spa(K〈T±1

1 , · · · , T±1
d 〉) be the d-dimensional affinoid torus. Let BdS be the closed unit ball over K. Let S be

a sousperfectoid space over K. There is a good notion of smooth morphisms over S by [Hub96, Def 1.7.10]:

Definition 2.4.1. Let h : X → S be a morphism of adic spaces over K.
(1) We say that h is standard-étale if X and S are affinoid and h is the composition of finite étale maps

with rational open immersions. We say that h is étale if locally on X and S, it is standard-étale.
(2) We say that is standard-smooth if there exists a factorisation X f−→ TdS → S for some d, where f is

standard-étale. We say that h is smooth if locally on X and S, it is standard-smooth.

Note that for any smooth morphism X → S over a sousperfectoid space S, the space X is itself sousper-
fectoid, hence sheafy. This also shows that the category of smooth adic spaces over S has fibre products.

Definition 2.4.2 ([Heu22d, Definition 2.3]). Let Y be an adic space over K. A toric chart of Y is a
standard-étale morphism f : Y → Td×T , where T is an affinoid perfectoid space over K. We call Y toric if
it admits a toric chart. We call an adic space Y over K smoothoid if it admits an open cover by toric spaces.

The prototypical example of a smoothoid space is the product X × T of a smooth rigid space with a
perfectoid space, or any object of its étale site. We recall some basic properties of smoothoid spaces that
we will need throughout, and refer to [Heu22d, §2] for proofs and more details: Smoothoid spaces are
sousperfectoid, in particular sheafy, and are moreover diamantine in the sense of [HK, §11]. In particular,
the functor from smoothoid spaces over K to diamonds over K is fully faithful and identifies structure
sheaves and étale sites. This will allows us to pass back and forth freely between a smoothoid space Y and
its associated diamond Y ♦. Finally, there is a good notion of differentials on smoothoid adic spaces:

Definition 2.4.3. Let Y be a smoothoid space and let ν : Yv → Yét be the natural morphism of sites. Then

Ω̃Y := R1ν∗OY , Ω̃nY := Rnν∗OY ' ∧nΩ̃Y
are vector bundles on Yét for any n ∈ N. If Y = X × T for a smooth rigid space X over K and a perfectoid
space T , then there is a canonical isomorphism Ω̃Y = π∗1Ω1

X(−1), where π1 : X × T → X is the projection.

2.5. Higgs bundles on smoothoid spaces. The intrinsic notion of differentials on smoothoid spaces allows
us to define Higgs bundles in this setting: Recall that G is any rigid group over K. Let τ ∈ {ét, v}.

Definition 2.5.1. A τ -G-Higgs bundle on a smoothoid Y is a pair (E, θ) of a G-bundle E on Yτ and a
section θ ∈ H0(Y, ad(E)⊗OY Ω̃Y ) such that θ ∧ θ = 0, where ad(E) is the adjoint bundle (Definition 2.3.3).

2.5.2. We note that if X is a smooth curve and Y is an object of the étale site of X ×T for some perfectoid
space T , then Ω̃Y = π∗1Ω1

X(−1) is a line bundle, rendering the Higgs field condition θ∧ θ = 0 vacuous for the
definition of Higgs bundles on Y . Throughout most of this article, this is the situation that we encounter.

Definition 2.5.3. Let (E,ϕ) be a τ -G-Higgs bundle on a smoothoid Y . We write Aut(E,ϕ) for the presheaf
on Yv defined by U 7→ AutU ((E,ϕ)|U ), the automorphisms of E over U preserving ϕ. Here, as usual, even if
E is an étale torsor, we identify E with the v-sheaf represented by its , so this is always a v-sheaf of groups.

2.6. Background on Picard stacks. From §6 onwards, we will freely use the notion of (strictly commu-
tative) Picard stacks on the v-site Yv of an adic space Y , or in fact, any v-stack Y . We briefly recall all the
relevant definitions and refer to [Del73, §1.4][CZ17, §A] for more details:
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Definition 2.6.1. Let Y be any v-stack. A Picard stack P on Yv is a v-stack P → Y with a bi-functor
⊗ : P ×Y P →P

and the datum of natural equivalences of functors expressing the associativity and commutativity of ⊗, such
that for every U ∈ Yv, the bi-functor ⊗ turns P(U) into a symmetric monoidal category in which every
object admits an inverse with respect to ⊗. The symmetric monoidal structure means in particular that P
has a unit section e : Y →P. There is an obvious notion of homomorphisms between Picard stacks.

An example is the v-stack of G-torsors on Yv for an abelian sheaf G on Yv, with ⊗ the contracted product.

Definition 2.6.2 ([CZ17, §A.2]). A sequence of homomorphism of Picard stacks P1
f−→ P2

g−→ P3 on
Yv is called left-exact if g ◦ f ' e is trivial and the natural maps induce an equivalence of Picard stacks
P1 ' e×P3 P2. The sequence is called exact if moreover g is essentially surjective locally on Yv.

Definition 2.6.3. Let P be a Picard stack on Yv and let F be any v-stack on Yv. Then an action of P on
F is the datum of a bi-functor

⊗ : P ×Y F → F
together with a natural equivalence of functors expressing the associativity, and an equivalence e⊗− ' idF .

Definition 2.6.4. A P-torsor is a v-stack F over Yv with a P-action satisfying the following properties:
(i) every U ∈ Yv admits a cover V → U such that F(V ) 6= ∅, and (ii) the following functor is an equivalence:

P ×Y F → F ×Y F , (P, F ) 7→ (P ⊗ F, F ).
This is clearly equivalent to the definition of P-torsors given in [CZ17, §A.5].

Lemma 2.6.5. Let P1
f−→ P2

g−→ P3 be a short exact sequence of Picard stacks. Let s : Y → P3 be any
section and let H := Y ×s,P3 P2 be the fibre of g over s. Then the restriction of the group structure on
P2 to P1 ×H makes H into a P1-torsor.

Proof. It is clear that f endows P2 with a natural P1 action that restricts to an action on H . For this action,
condition (i) of Definition 2.6.4 holds because g is essentially surjective. Condition (ii) holds because the
natural morphism (e×P3 P2)×Y H →H ×Y H has a quasi-inverse given by (F1, F2) 7→ (F1⊗F−1

2 , F2). �

We then have the following 2-categorical version of Definition 2.2.2. Here we note that since P is
commutative, we are allowed to be less careful about whether we consider left actions vs right actions.

Definition 2.6.6. Let now P be a Picard stack on Yv, let F be a v-stack with a P-action, and let H be
a P-torsor. Then we can construct the twist H ×P F of F by H : Consider the antidiagonal action of P
on the product H × F , i.e. the action on the second factor is via [−1] : P →P. Following [Ngô06, p420],
we can form the prestack quotient [(H × F)/P]pre by this action: Indeed, for each U ∈ Yv, we can form
the 2-quotient [H (U)×F(U)/P(U)]. This is a priori a 2-category, but since H is a P-torsor, it is in fact
a 1-category (cf. [Ngô06, Lemma 4.7]). By stackifying [(H ×F)/P]pre, we thus obtain a v-stack

H ×P F := [(H ×F)/P].
This is a twist of F in the sense that over any v-cover of Y where H becomes 'P, it is equivalent to F .

3. Hodge–Tate theory for commutative relative adic groups

A general theme of this article is that of “abelianisation”, which means to study the Hodge theory of
non-abelian group varieties by relating it to the relative Hodge theory of families of commutative group
varieties. The goal of this section is to establish the necessary foundations on relative rigid group varieties.

Namely, our first aim in this section is to generalize a result of Fargues on the logarithm map of a rigid
group [Far19, Théorème 1.2] to the relative setting of smooth rigid groups in sousperfectoid families. Second,
we use this to prove a relative version of the HTlog exact sequence from [Heu22c, Theorem 1.3.1].
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Definition 3.0.1. Let K be any non-archimedean field extension of Qp. Let S be any sousperfectoid adic
space or any rigid space over K. A smooth relative group over S is a group object G → S in the category of
smooth morphisms over S. We also call this a smooth S-group. By an open subgroup of G we mean an open
adic subspace U ⊆ G that has an S-group structure so that U ⊆ G is a homomorphism of smooth S-groups.

3.1. Local structure near the identity of smooth relative adic groups. Throughout the following,
we fix an adic space S over K as in Definition 3.0.1.

Lemma 3.1.1. Let f : G → S be a smooth relative group. Then locally on S, there exists an open subspace
U ⊆ G containing the image of the identity section e : S → U with an isomorphism of adic spaces U ∼= BdS
over S that identifies e with the origin 0 : S → BdS.

Proof. Let x be any point in the image of the identity section e : S → G. Then locally on S there is a
quasi-compact open neighbourhood x ∈ V for which f |V admits a factorisation V g−→ BdS → S such that g
is étale and quasi-compact. Replacing S by the preimage of V ⊆ G under e, we may assume that e factors
through V . Let y : S e−→ V

g−→ BdS be the composition. After replacing V → BdS with its base-change along
the isomorphism BdS

+y−−→ BdS , we can assume that S e−→ V
g−→ BdS coincides with the origin 0 ∈ BdS .

Consider now the inverse system of closed balls BdS,ε ⊆ BdS of radius ε. We have S = lim←−ε→0 B
d
S,ε in the

category of diamonds, and hence
Sét-qcqs = 2-colimε→0(BdS,ε)ét-qcqs

by [Sch22, Prop. 14.9]. Here on the right, the transition maps are given by base-change. In particular, the
étale map V → BdS gives rise to the system of base-changes Vε := V ×Bd

S
BdS,ε. Considering the splitting

S
e−→ V ×Bd

S
,0 S → S inside Sét-qcsep, we deduce that it extends to a splitting BdS,ε

eε−→ Vε → BdS,ε for some
ε > 0. Here the map eε : BdS,ε → Vε is a closed immersion, but also étale by [Hub96, Prop. 1.6.7.(iii)], in
particular open. Hence the image U of eε is an open subspace of Vε ⊆ G isomorphic to BdS,ε via eε. As
lim←−ε→0 eε = e by construction, U still contains x. We thus get the desired open subspace of G. �

Lemma 3.1.2. Assume that S is quasi-compact and let U ⊆ BdS be an open subspace that contains the image
of the origin 0 : S → BdS. Then U contains BdS,ε for some ε > 0.

Proof. Using that S is quasi-compact, we reduce to the case that S is affinoid and U is rational, defined
as the locus inside BdS = Spa(R〈X1, . . . , Xd〉) where |fi(x)| ≤ |g(x)| 6= 0 for some elements f1, . . . , fr, g ∈
R◦〈X1, . . . , Xd〉. For this the statement can be seen from the usual calculation: Write fi =

∑
n∈Zd≥0

an,iX
n

and g =
∑
n∈Zd≥0

bnX
n, then the condition that 0 ∈ U implies that b0 ∈ R× and |a0,i(x)| ≤ |b0(x)| for all

x ∈ S. Then for ε > 0 small enough, we have for any x ∈ S that ε ≤ |b0(x)| and hence

|fi(x)| ≤ max(|a0,i(x)|, |
∑
n 6=0 an,i(x)εn|) ≤ |b0(x)| = max(|b0(x)|, |

∑
n 6=0 bn(x)εn|) = |g(x)|.

This shows that Bdε,S ⊆ U . �

Lemma 3.1.3. Let f : G → S be a smooth S-group. Then locally on S, there exists an open S-subgroup
U ⊆ G and an isomorphism of adic spaces U ∼= BdS over S identifying e : S → U with the origin 0 : S → BdS.

Proof. We may assume that S = Spa(R,R+) is affinoid. By Lemma 3.1.1, there exists an open subspace
U ⊆ G containing the image of the identity section e : S → G such that U ∼= BdS . It follows that U×SU ∼= B2d

S

is an open neighbourhood of the identity in G ×S G. Let m : G ×S G → G be the multiplication map, then
V := m−1(U)∩U×S U ⊆ G×S G is an open subspace of U×S U containing the image of the identity section.
By Lemma 3.1.2, it follows that V ⊆ U ×S U ∼= B2d

S contains an open ball B2d
S,ε for some 0 < ε ≤ 1 with 0

corresponding to the identity. Hence the multiplication map restricts to a map of open subspaces

m : BdS,ε × BdS,ε → BdS .
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On global sections, this is given in terms of coordinates X,Y, Z by Zi 7→ fi =
∑
n,k∈Zd≥0

an,k,iX
nY k for some

an,k,i ∈ R. As m(0,−) and m(−, 0) : BdS,ε → BdS are both the inclusion by construction, we know that the
low degree terms of fi are

fi = Xi + Yi + [higher terms].
It follows from this that for n > 0 large enough, the function p−nfi(pnX1, . . . , p

nXd, p
nY1, . . . , p

nYd) is
contained in R◦〈X1, . . . , Xd, Y1, . . . , Yd〉. This means that for ε > 0 small enough, the map m restricts to

m : BdS,ε × BdS,ε → BdS,ε.

Thus the image of BdS,ε ⊆ BdS ∼= U ⊆ G is an open S-subgroup with the desired properties. �

This also shows that one can define for any smooth S-group its Lie algebra LieG, a vector bundle on S.

3.2. The logarithm for commutative relative adic groups. From now on, we assume G is commutative.

Proposition 3.2.1. Let S be a sousperfectoid adic space or a rigid space over K. Let G → S be a com-
mutative smooth S-group. Then locally on S, there is an S-subgroup U ⊆ G and an isomorphism of smooth
S-groups U ∼−→ (BdS ,+) that on completions at the identity section is given by the formal Lie group logarithm.

Proof. By Lemma 3.1.3, we may assume without loss of generality that G ∼= BdS as an adic space over S.
The completion of G at the identity is then a formal S-group scheme

G∧|e = Spf(R[[X1, . . . , Xd]])

with group structure given by a formal group law F1(X,Y ), . . . , Fd(X,Y ) ∈ R[[X1, . . . , Xd, Y1, . . . , Yd]].
Any such formal S-group is isomorphic to the additive formal group (G∧a )d via the logarithm map: More
precisely, following the proof of [Sch11, Proposition 18.16], there are formal power series Φi(Z) =

∑
ωn,i

Zn

n! ∈
R[[Z1, . . . , Zd]] such that

Φ(0) = 0, Φ(Y + Z) = F (Φ(Y ),Φ(Z)).
Moreover, it is shown in loc. cit. that ‖ωn,i‖ ≤ ‖Φ′i(0)‖n. It follows that there is k > 0 such that Φi(pkZ) ∈
R◦〈Z1, . . . , Zd〉, which means that Φi induces a homomorphism (Bdε ,+) → G for any ε < 1/k. Since the
underlying morphism of adic spaces is of the form BdS,ε → BdS , sending 0 to 0, and is given by the identity
on tangent spaces, it is automatic that this restricts to an isomorphism BdS,ε → BdS,ε. �

The goal of this subsection is to give a more canonical and functorial way to describe an open subgroup
U of G related to the Lie algebra. Namely, we will show that there is a maximal open subgroup on which
the logarithm converges. For its description, we need some further preparations:

Lemma 3.2.2. Assume that S is a smooth rigid space. Let f : G → S be a commutative smooth S-group.
Then [p] : G → G is étale. In particular, for any n ∈ N, the morphism G[pn]→ S is étale.

Proof. We first note that the result holds if S = Spa(L,L+) where L is a field: By [Hub94, Proposition
1.7.5], we can immediately reduce to L+ = OL, and in this case the result holds by [Far19, Lemme 1].

Since S and f are smooth, G is smooth over K. Since [p] : G → G is étale in each fibre of S, we can now
argue by miracle flatness ([SP, 00R4]) that [p] is flat. By [Hub94, Proposition 1.7.5], it therefore suffices to
check on Spa(K,OK)-points of S that [p] : G → G is étale. Here we have already seen the statement. �

We now generalise the notion of topological p-torsion subgroups of [Heu22b, §2.2] to the relative setup:

Definition 3.2.3. A subspace T ⊆ G of a smooth S-group G is topologically p-torsion if for any open
subspace U ⊆ G with Im(e) ⊆ U and any quasi-compact open subspace T0 ⊆ T , there is n ∈ N such that

[pn](T0) ⊆ U.
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Proposition 3.2.4. Let S be a sousperfectoid adic space or a rigid space over K. Let G → S be a commu-
tative smooth S-group. Then there exists a unique maximal topologically p-torsion open subgroup Ĝ ⊆ G and
a unique homomorphism

logG : Ĝ → LieG ⊗OS Ga
into the smooth S-group defined by LieG such that logG induces the identity on Lie algebras. Moreover:

(1) We have ker logG = G[p∞] := lim−→n
G[pn], the p-power torsion subgroup of G.

(2) If S is a smooth rigid space, then logG is étale, and its image is an open subgroup of LieG ⊗OS Ga.
(3) If [p] : G → G is surjective, then logG gives rise to a short exact sequence of smooth S-groups

0→ G[p∞]→ Ĝ
logG−−−→ LieG ⊗OS Ga → 0

for the étale topology. More generally, we still obtain such a short exact sequence if there exists an
open subgroup U ⊆ G on which [p] : U → U is surjective.

(4) The assignment G 7→ (Ĝ, logG) is functorial in G → S.
(5) The formation of Ĝ commutes with base-change: If S′ → S is any morphism of adic spaces with S′

sousperfectoid or rigid, then G′ := G ×S S′ → S′ is a smooth S′-group and Ĝ′ = Ĝ ×S S′.
(6) In the category of sheaves on Sv, the evaluation at 1 defines a natural isomorphism

H omS(Zp,G) = Ĝ.

Definition 3.2.5. We also call the group Ĝ in Proposition 3.2.4 the topologically p-torsion subgroup of G.

Proof. All statements are local on S, so we may without loss of generality replace S by an open cover. Let
U ⊆ G be an open subgroup as described in Prop 3.2.1. Then we claim that the open subgroup

Ĝ :=
⋃
n∈N[pn]−1(U)

has all desired properties. It is clear that U is topologically p-torsion, hence so is [pn]−1(U) and therefore
Ĝ. On the other hand, it is clear that Ĝ contains every topologically p-torsion subgroup.

Next, we construct logG : Since LieG ⊗OS Ga → S is a uniquely p-divisible S-group (i.e., [p] is an
isomorphism), there is a unique way to extend log : U → (Bd,+) to a map logG : Ĝ → Gda. By the
description of the completion at the origin in Proposition 3.2.1, we see that this becomes canonical and
functorial if we identify the image with Lie(G)⊗OS Ga. Part (4) is then clear from the construction.

It is clear from the fact that log|U is injective that ker logG = G[p∞]. This shows (1). For (2), it follows
from [p] : G → G being étale by Lemma 3.2.2 that logG : [pn]−1(U) → Lie(G) ⊗OS Ga is étale. This shows
that its image is open. In the colimit over n, it follows that the same is true for logG .

For (3), it suffices to prove that [p] : Ĝ → Ĝ is surjective, for which it suffices to see that [p](G)∩Ĝ = [p](Ĝ).
This is immediate from the definition. The case of general U follows because LieU = LieG.

For part (5), observe that U ′ := U ×S S′ ⊆ G′ is an open subgroup satisfying the description of Proposi-
tion 3.2.1. Let ψ : G′ → G be the base-change map, then it follows from the construction that

Ĝ′ =
⋃
n∈N[pn]−1

G′ (U ′) =
⋃
n∈N[pn]−1

G′ (ψ−1(U)) =
⋃
n∈N ψ

−1([pn]−1
G (U)) = ψ−1(Ĝ).

For (6), we can argue roughly like in [Heu22b, Proposition 2.14]: We first observe that by considering
varying S, it suffices to prove that for any perfectoid space S, we have

Hom(Zp,G) = Ĝ(S).

We first observe that this is true for G = G+n
a for any n ∈ N, where G+

a := (B1,+). Indeed, if S is a
perfectoid space, we have Map(Zp,G+

a ) = Mapcts(Zp,O+(S)), and thus

Hom(Zp,G+
a ) = Homcts(Zp,O+(S)) = O+(S) = G+

a (S).
For general G, let ϕ : Zp → G be any morphism, then there is an open subgroup pnZp that maps into

U ∼= G+n
a . We deduce from the case of G+

a that ϕ(pn) ∈ Ĝ(S). Hence ϕ(1) ∈ Ĝ(S) by definition of Ĝ.
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Conversely, let s ∈ Ĝ(S) and consider the induced map ϕ1 : Z→ Ĝ, n 7→ n · s. Then there is n such that
pns ∈ U(S). By the case of G+n

a , there is then a unique homomorphism ϕ2 : pnZp → U sending pn to pns.
Consider the direct sum of ϕ1 and ϕ2

Z× pnZp
ϕ1,ϕ2−−−−→ G.

Since ϕ1 and ϕ2 agree on their intersection pnZ, this map admits a unique factorisation through the cate-
gorical quotient (Z× pnZp)/pnZ = Zp. This defines the desired map ϕ : Zp → G sending 1 7→ s. �

Lemma 3.2.6. The final assumption of Proposition 3.2.4.(3) is always satisfied if G → S is the analytifica-
tion of a smooth group scheme Galg → Salg over an algebraic K-variety Salg.
Proof. By [SGA 3.1, Exp VIB , Théorème 3.10, Proposition 3.11], there exists a maximal open subgroup
scheme Galg◦ ⊆ Galg → S such that every geometric fibre is connected, and on this, [p] is surjective. �

3.3. The Hodge–Tate sequence for relative adic groups. We can now state the main result of §3.
Theorem 3.3.1 (relative Hodge–Tate sequence for G). Let f : X → Y be a smooth morphism of smooth
rigid spaces over K. Let G → X be a commutative smooth relative group. Then the Leray spectral sequence
for µ : Yv → YÉt induces a left-exact sequence of abelian sheaves on Yv, functorial in X and G,

(3.3.2) 1→ µ∗(R1fÉt ∗Ĝ)→ R1fv∗Ĝ
HTlogG−−−−−→ fv∗(LieG⊗OX Ω̃X).

Remark 3.3.3. We call this the Hodge–Tate sequence for G because, via the Primitive Comparison Theorem,
the case of Y = Spa(K), G = Ga and proper X recovers the Hodge–Tate sequence of p-adic Hodge theory
[Sch13, §3]. We note that (3.3.2) is not always right-exact, i.e. consider Y = Spa(K) and G = G+

a .
The main technical input into the proof of the Theorem is the following:

Proposition 3.3.4. Let S be a smoothoid space and let G → S be a commutative smooth S-group such that
[p] : G → G is étale. Let ν : Sv → Sét be the natural map. Then for n ≥ 1, there is a natural isomorphism

(3.3.5) Rnν∗Ĝ
∼−→ Lie(G)⊗OS Ω̃nS

Proof. This follows from the long exact sequence of Proposition 3.2.4.(3): For n ≥ 1, we have
Rnν∗(G[p∞]) = lim−→n

Rnν∗(G[pn]) = 0

since G[pn]→ S is étale by assumption. On the other hand, by the projection formula and Definition 2.4.3,

Rnν∗(Lie(G)⊗OS Ga) = Lie(G)⊗OS Rnν∗Ga = Lie(G)⊗OS Ω̃nX .
It remains to see that for any open subgroup U ⊆ Lie(G) ⊗OS Ga, the induced map on cohomologies

Rnν∗U → Rnν∗(Lie(G) ⊗OS Ga) is an isomorphism. As this question is local on S, we may assume that
Lie(G) ⊗OS Ga ' Gda. Arguing exactly as in [Heu21, Lemma 3.10], we see that Gda/U satisfies the approxi-
mation property assumed in [Heu22a, Proposition 2.14], so we may conclude that Rnν∗(Gda/U) = 0. �

Proof of Theorem 3.3.1. For any b : T → Y in Yv, let XT := X ×Y T → T be the base-change of X → Y
along b. This is a smoothoid space over T . Let GT := G ×X XT → XT be the base-change, a smooth relative
group over XT . We consider the Leray sequence for the morphism ν : XT,v → XT,ét. For the abelian sheaf
on XT,v represented by the smooth relative group ĜT , this gives a left-exact sequence

(3.3.6) 0→ H1
ét(XT , ĜT )→ H1

v(XT , ĜT )→ H0(XT ,R1ν∗ĜT ).
By Lemma 3.2.2, [p] : G → G is étale, hence so is [p] : GT → GT . We can thus apply Proposition 3.3.4:

H0(XT ,R1ν∗ĜT ) = H0(XT ,Lie(GT )⊗ Ω̃XT ) = fv∗(Lie(G)⊗ Ω̃X)(T ),

where for the last equality we use that by [Heu22d, Proposition 2.9.(2)], the sheaf Ω̃XT is the pullback of
Ω̃X along XT → X. This describes the last term in (3.3.6). For the first term, the étale sheafification of
T 7→ H1

ét(XT , ĜT ) becomes R1fÉt ∗Ĝ: Here we use that ĜT = Ĝ ×X XT (Proposition 3.2.4).
Upon v-sheafification in T , the left-exact sequence thus attains the desired form (3.3.2). �
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4. The canonical Higgs field on v-G-bundles

Throughout this section, letK be a perfectoid field extension of Qp that contains all p-power roots of unity.
Let G be a rigid group over K, and let Y be a smoothoid adic space over K in the sense of Definition 2.4.2.
The main goal of this section is to associate to any v-topological G-bundle V on Y a canonical Higgs field
θV . This generalises a construction of Rodríguez Camargo [RC22] in the context of the work of Pan [Pan22].
For the construction, we first need to recall the local p-adic Simpson correspondence in this setup:

4.1. Local p-adic Simpson correspondence. We begin with some recollections from [Heu22d].

4.1.1. Let Y be a smoothoid adic space with a toric chart f : Y → Td × T where T is affinoid perfectoid
(see Definition 2.4.2). Recall that the torus Td admits a pro-étale affinoid perfectoid cover

Td∞ = Spa(K〈T±1/p∞
1 , · · · , T±1/p∞

d 〉)→ Td

which is a Zp(1)d-torsor in the pro-étale site Tdproét. Pulling this back along the toric chart f , we obtain a pro-
étale affinoid perfectoid cover Y∞ → Y via pullback of Td∞ → Td along f . Let ∆f := Gal(Y∞/Y ) ' Zp(1)d
be the Galois group of this cover. Then by [Heu22d, Lemma 2.17], the chart f induces isomorphisms

HTf : Homcont(∆f ,OY (Y )) ∼−→ H1
cont(∆f ,OYv (Y∞)) ∼−→ H1

v(Y,OY ) ∼−→ H0(Y, Ω̃Y )

which can explicitly be described as follows: The chart f induces a basis dT1
T1
, . . . , dTd

Td
of Ω̃Y over OY (Y ).

Let ∂1, . . . , ∂d be the dual basis. Then the OY (Y )-linear dual of HTf
ρf : ∆f → H0(Y, Ω̃∨Y )

is the (1)-twist of the map that sends the i-th basis vector γi of ∆f (−1) ' Zdp to ∂i. We denote by Ω̃+
Y,f the

finite free O+
Y -submodule of Ω̃Y generated by the image of Homcont(∆f ,O+

Y (Y )) under HTf .
We also need the following more precise integral version of the first isomorphism in HTf :

Lemma 4.1.2 ([Heu22b, Lemma 2.14]). There is a constant γ ∈ R>0 depending only on Y and f such that
for any s ∈ N and i ≥ 1, the following map has γ-torsion kernel and cokernel:

Hi
cont(∆f ,O+

Y (Y )/ps) ∼−→ Hi
cont(∆f ,O+

Yv
(Y∞)/ps)

As before, let G be any rigid group over K, written multiplicatively. Let Lie(G) be its Lie algebra and
let g := Lie(G)⊗K Ga be the associated rigid group. We recall the p-adic Lie algebra exponential of G:

Lemma 4.1.3 ([Heu22a, §3.2, Proposition 3.5] [Sch11]). There exists an open rigid subgroup g◦ ⊆ g,
isomorphic as a rigid space to a closed ball, for which there is a morphism of rigid spaces

exp : g◦ → G

(but not a homomorphism, unless G is commutative) that is uniquely characterised by the following properties:
(1) exp is an open immersion onto an open subgroup G0 of G.
(2) We have exp(0) = 1 and exp induces the identity map on tangent spaces.
(3) The group structures of g◦ and G are related via exp by the Baker–Campbell–Hausdorff formula.

We note that the subgroup g◦ ⊆ g is not in general uniquely determined. In the following, when we deal
with any rigid group G, we will always tacitly fix such a group g◦ throughout. For reductive G, there is in
fact a canonical choice [Heu22a, Example 3.3, Lemma 4.20]. But as we will never need any precise estimates
or radii of convergence in the following, it is harmless to just make any choice. For any k ∈ Z≥0, we then set

gk := pkmKg◦,

which is on open subgroup of g. Then its image Gk := exp(gk) is an open subgroup of G by [Heu22a,
Proposition 3.5], and the map

exp : gk ∼−→ Gk

is an isomorphism of rigid spaces. We call its inverse log.
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4.1.4. For the formulation of the local correspondence, we can now recall the notion of small G-bundles:

Definition 4.1.5 ([Heu22d] Definition 6.2, Lemma 6.3). Let Y be smoothoid with a fixed toric chart f . Let
γ be as in Lemma 4.1.2. Set c := 5γ (we refer to [Heu22d, Proposition 5.5] for a motivation of this constant).

(1) A G-bundle V on Yv is small if V admits a reduction of structure group to Gc.
(2) A G-Higgs bundle (E, θ) on Yét is small if E is trivial and there exists a trivialisation E ∼= G with

respect to which θ is a section of the O+
Y -submodule gc ⊗O+

Y
Ω̃+
Y,f , where Ω̃+

Y,f was defined in 4.1.1.

We can now recall the local p-adic Simpson correspondence. This is a generalisation of a result of Faltings
([Fal05, Theorem 3], [AGT16, §II.13]) from GLn to general rigid groups G and to smoothoid spaces:

Theorem 4.1.6 (Local p-adic Simpson correspondence for G, [Heu22d, Theorem 6.5]). Let Y be a toric
smoothoid space over K and let f : Y → Td×T be a toric chart. Then f induces an equivalence of groupoids

LSf :
{
small G-Higgs bundles on Yét

} ∼−→ {
small v-G-bundles on Yv

}
.

In the case of GLn, this extends to an equivalence of categories

LSf :
{
small Higgs bundles on Yét

} ∼−→ {
small v-vector bundles on Yv

}
.

We also recall for later reference that one can always apply LSf locally on Y :

Lemma 4.1.7 ([Heu22d, Lemmas 6.4, 4.11]). For any v-G-bundle V on Y , there is an étale cover g : Y ′ → Y
with a toric chart h of Y ′ such that g∗V is small with respect to h. The same holds for G-Higgs bundles.

4.1.8. We briefly review the construction of LSf , see [Heu22d, §6] for details. Let (E, θ) be a small G-Higgs
bundle where E ∼= G. Via HTf , the section θ ∈ gc ⊗O+

Y
Ω̃+
Y,f corresponds to a continuous homomorphism

(4.1.9) ρ : ∆f → gc(Y ).

More explicitly, it is given by interpreting any γ ∈ ∆f via HTf as a function ∂(γ) : Ω̃+
Y,f → O

+
Y and setting

ρ(γ) := ∂(γ)(θ). It follows from this that the Higgs field condition for θ translates to the statement that
ρ has commutative image, in the sense that for any γ, γ′ ∈ ∆f , we have [ρ(γ), ρ(γ′)] = 0 in gc(Y ). By
Lemma 4.1.3.(3), this ensures that applying exp preserves the linearity, so we obtain a homomorphism

exp(ρ) : ∆f → gc(Y ) exp−−→ Gc(Y ).

The associated v-G-bundle V = Vρ on Yv is now defined for any W ∈ Yv by

(4.1.10) Vρ(W ) :=
{
s ∈ E(Y∞ ×Y W )

∣∣γ · s = exp(−ρ(γ))s, ∀γ ∈ ∆f

}
,

where the action of ∆f on E(Y∞ ×Y W ) is induced by the Galois action of ∆f on Y∞. More geometrically,
Vρ is isomorphic to the pushout of the ∆f -torsor Y∞ → Y along the morphism of v-sheaves ∆f → Gc → G
attached to ρ. This shows that Vρ is a small v-G-bundle on Yv. On the other hand, (4.1.10) shows that there
is a canonical isomorphism

(4.1.11) (Vρ)|Y∞
∼−→ E|Y∞ .

4.2. Canonical Higgs field for v-G-bundles. The main result of §4 is now the following:

Theorem 4.2.1. Let Y be a smoothoid adic space over K and let G be any rigid group over K.
(1) There is a unique way to associate to any v-G-bundle V on Y a canonical Higgs field

θV ∈ H0(Y, ad(V )⊗OY Ω̃Y )

in such a way that the following two conditions holds:
(a) The association V 7→ (V, θV ) defines a fully faithful functor, natural in Y and G,

θ :
{
v-G-bundles on Y

}
→
{
v-G-Higgs bundles on Y

}
.
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(b) When Y admits a toric chart f and V is small on Y , let (E, θE) = LS−1
f (V ) be the associated

G-Higgs bundle via the local p-adic Simpson correspondence of Theorem 4.1.6. Then the natural
isomorphism V (Y∞) ' E(Y∞) of (4.1.11) identifies the pullbacks of (V, θV ) and (E, θE) to Y∞.

(2) The morphism of topoi ν : Ỹv → Ỹét induces an equivalence of categories{
G-bundles on Yét

}
→
{
v-G-bundles V on Y with θV = 0

}
.

Definition 4.2.2. We call θV the canonical Higgs field of V .

The naturality in (1).(a) means in particular that the formation of θV is compatible with localisation.

Remark 4.2.3. Part (2) means that θV can be viewed as a mixed characteristic analogue of the p-curvature
in mod p geometry. Indeed, (2) can be regarded as an analogue of Cartier descent [Kat70, Theorem 5.1].

Remark 4.2.4. For G = GLn on smooth rigid spaces, Theorem 4.2.1 is due to Rodríguez Camargo [RC22]
(up to a small difference in technical setups: In [RC22], it is assumed that K is algebraically closed). Our
result can thus be regarded as a generalisation to general G and smoothoid Y , by a different proof.

Remark 4.2.5. Assume that G is commutative, then ad(G) ⊗ Ω̃ = Lie(G) ⊗ Ω̃. Therefore, in this special
case, Theorem 4.2.1 is closely related to the short exact sequence of Theorem 3.3.1, which we may regard
as a geometrisation and a generalisation to relative groups. Indeed, given a v-G-torsor V , we can regard
θ := HTlog(V ) as a Higgs field, and the left-exactness of the sequence corresponds to Theorem 4.2.1.2.

In fact, we think that there ought to be a generalisation of Theorem 4.2.1 to relative groups on smoothoids.

Proof of Theorem 4.2.1. We first assume that Y is toric with a fixed toric chart f and that V is small with
respect to f . Then by Theorem 4.1.6, we can find a small G-Higgs bundle (E, θ) such that V = LSf (E, θ).
We may thus assume that V is as described in (4.1.10). Unravelling the definition of ad(−), it follows that

(4.2.6) (ad(Vρ)⊗OY Ω̃Y )(Y ) =
{
s ∈ ad(E)(Y∞)⊗O(Y ) Ω̃Y (Y )

∣∣γ · s = ad(exp(−ρ(γ))) · s, ∀γ ∈ ∆f

}
where on the right, the adjoint action ad : G→ End(ad(E)) is obtained by deriving the action G→ Aut(E).
We claim that θ is an element of this set. Since θ is fixed by the ∆f -action, it suffices to prove that

θ = ad(exp(−ρ(γ))) · θ.
Via HTf , we can identify θ with ρ ∈ Hom(∆f ,O(Y )), so it suffices to prove that for any γ, γ′ ∈ ∆f ,

ρ(γ′) = ad(exp(−ρ(γ))) · ρ(γ′)
inside gc(Y ). By applying the bijection exp and using [Heu22a, Lemma 3.10.3], this is equivalent to

exp(ρ(γ′)) = exp(ρ(γ)) · exp(ρ(γ′)) · exp(−ρ(γ)).
This holds by Lemma 4.1.3.(3) (see also [Heu22a, Lemma 3.10.1]) because [ρ(γ), ρ(γ′)] = 0 due to the
assumption that θ is a Higgs field. This shows that θ defines a Higgs field θV on V , as we wanted to see.

This construction is clearly functorial in V and natural in G and (Y, f). As any v-G-torsor on Y becomes
small on some étale cover by Lemma 4.1.7, it remains to prove that θV is independent of the toric chart f .
If this is the case, then the local definitions glue to a global Higgs field on Y . This will also show (1).(a).

We note that for G = GLn, the above local definition of θV recovers that in [Heu23, Theorem 4.8,
Remark 4.9]. This Theorem also proves the independence of toric chart for G = GLn, as the proof still
works without change for smoothoid Y . We are therefore left to reduce the general case to that of GLn.

To this end, let f ′ be any other toric chart of Y and let θ′V be the associated Higgs field computed with
respect to f ′. We wish to see that θV = θ′V . Since we can check this on any étale cover of Y , we may shrink
G: By [Heu22a, Corollary 3.9], there are k, r ∈ N such that Gk admits a homomorphism ϕ : Gk ↪→ GLr
that is a locally closed immersion. After replacing Y by some étale cover, we may assume that V admits a
reduction of structure group to Gk ⊆ Gc for this k. By functoriality in G, it therefore suffices to prove the
statement for Gk instead of G. But then, as ϕ is an immersion, the induced map

Lie(ϕ)⊗ Ω̃ : g⊗ Ω̃→Mr(OY )⊗ Ω̃



16 BEN HEUER, DAXIN XU

is injective. We can thus indeed reduce to the case of G = GLr to check that θV = θ′V . This shows (1)(b).
Part (2) follows immediately from the local construction: Via the local p-adic Simpson correspondence

Theorem 4.1.6, the Higgs bundle LS−1
f (V ) has trivial Higgs field if and only V is étale-locally trivial. �

Remark 4.2.7. Alternatively, the independence of toric chart can be seen by a direct computation.

4.3. Moduli stacks.

Definition 4.3.1 ([Heu22d, §7.2]). Let X be a smooth rigid space over K.
(1) For τ ∈ {ét, v}, we denote by BunG,τ the prestack on PerfK defined by

T 7→ {G-bundles on (X × T )τ}.

(2) Let H igG,τ be the prestack of Higgs bundles defined as the fibered functor on T ∈ PerfK :

T 7→ {τ -G-Higgs bundles on X × T}.

The key players in this article will be BunG,v and H igG,ét. We therefore also set H igG := H igG,ét.

Proposition 4.3.2 ([Heu22d, Theorem 7.13]). For τ ∈ {ét, v}, both BunG,τ and H igG,τ are v-stacks.
Moreover, BunG,ét, BunG,v and H igG,ét are small v-stacks.

Proof. Let us present a variant of the proof in [Heu22d] of the first sentence: For BunG,v, this follows from
v-descent for v-G-bundles. For H igG,v, note that a Higgs field θ on a v-G-bundle can be v-locally defined
and the vanishing of θ ∧ θ can be v-locally verified. Thus the case of H igG,v follows from that of BunG,v.

For BunG,ét, we can now use that by Theorem 4.2.1.(2), an étale G-bundle is equivalent to a v-G-bundle
V with θV = 0. We may therefore deduce v-descent for étale G-bundles from that of (V, θV ), showing that
BunG,ét is a v-stack. The assertion for H igG,ét can be verified in a similar way as for H igG,v. �

We can now reinterpret Theorem 4.2.1 as saying that the natural morphism H igG,v → BunG,v, defined
by forgetting Higgs fields, admits a canonical section:

(4.3.3) ψ : BunG,v →H igG,v, V 7→ (V, θV ).

5. Abelianisation for reductive G

Throughout this section, let K be an algebraically closed complete extension of Qp. The first goal of
this section is to recall the definition of the Hitchin base A and the Hitchin morphisms for H ig and
Bunv. Second, following Ngô, we define a commutative smooth relative group J → X ×A depending on
G that will be the key player for the phenomenon of “abelianization”: Roughly speaking, Definition 5.3.6,
Propositions 5.3.8 and 5.4.9 below say that J acts on both G-Higgs bundles and v-G-bundles in a natural
way that remembers the Higgs field, respectively the canonical Higgs field. For G = GLn, this is closely
related to the classical BNR-correspondence, as J is then given by the group of units of the spectral curve.

5.1. Hitchin map and centralizers after Ngô. In this subsection, we review the Hitchin map over a
curve following Ngô [Ngô06] (see also [CZ15, §2]). Our setup will differ slightly from that of Ngô as we work
in an analytic setting over K: Let X be a smooth projective curve over K. Let G be a connected reductive
group over K. We will later consider both X and G as adic spaces over K. We fix a maximal torus of G
and denote by t the associated affine group scheme over K. Let W be the Weyl group of G.

5.1.1. Let LieG be the Lie algebra of G. We denote by g = Ga⊗K LieG the associated affine group scheme
over K. We set c = Spec(O(g)G) where O(g)G are the invariants for the adjoint action of G on g. Let

(5.1.2) χ : g→ c

be the Chevalley map induced by O(g)G → O(g). This is a morphism of K-varieties that is G × Gm-
equivariant for the trivial G-action on c and the Gm-action on c defined by the gradings on O(t)W ' O(g)G.
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We simply denote the line bundle Ω̃X on X by Ω, if there is no confusion. Let

cΩ := Ω×Gm c and gΩ := Ω×Gm g

be the Gm-twist of c and g by the geometric line bundle Ω over X, considered as schemes over X. Then the
Hitchin base AG,X may be defined as Sect(X, cΩ), the scheme of sections of cΩ over X [Ngô06, Lemma 2.4].

Definition 5.1.3. Let u : X ×A→ cΩ be the universal section over X.

5.1.4. We now pass to the analytic setup of adic spaces over Spa(K). Let AX,G be the analytification of
AX,G. By abuse of notation, let us still denote by X the adic space associated to X, and similarly for the
other schemes considered above. Passing further from adic spaces over K to v-sheaves over K, by [Heu22d,
Lemma 8.9], the analytified Hitchin base AX,G then represents the functor of sections of cΩ over X on PerfK

AX,G : PerfK → Sets, T 7→ {sections XT → cΩ,T over X},

where XT := X × T is the base-change of X and similarly cΩ,T is the base-change of cΩ → X to XT . We
simply denote the Hitchin base by A if X and G are clear from the context.

The analytification X×A→ cΩ of u is then uniquely characterised by the property that for any f : T → A
in Av, the corresponding section s : XT → cΩ,T is given by the composition X × T id×f−−−→ X ×A u−→ cΩ.

5.1.5. We now give a construction of the Hitchin map in terms of quotient stacks, which is specific to curves:

Definition 5.1.6. Let Y be a smoothoid space, and let V → Y be a smooth morphism of adic spaces
equipped with a left-action by G. Let τ ∈ {ét, v}. The quotient τ -stack [V/G]τ of V by G is defined by
sending each object T → Y of the big étale site YÉt (resp. Yv) to the groupoid of pairs (E,ϕ), where E is a
τ -G-bundle on T and ϕ is a section T → E ×G VT of the pullback of V to T twisted by E.

Remark 5.1.7. This is equivalent to the datum of a G-equivariant morphism φ : E → VT with respect to
the left action on E by G defined by g · e := eg−1 for g ∈ G, e ∈ E. Indeed, given such a morphism φ, the
morphism E → E ×G VT , e 7→ (e, φ(e)) is clearly constant and thus factors through ϕ.

We now apply this to the vector bundle V = gΩ on X equipped with the adjoint action of G.

Lemma 5.1.8. Let T ∈ PerfK and let Y ∈ XT,ét. Then the groupoid of τ -G-Higgs bundles on Y is naturally
isomorphic to the groupoid of sections

s : Y → [gΩ/G]τ
over X. In particular, the v-stack H igG,τ is isomorphic to the stack of sections of [gΩ/G]τ over X.

Definition 5.1.9. Given a τ -G-Higgs bundle (E,ϕ) on Y , we denote the associated section by sE,ϕ.

Proof. Any such section s is equivalent to a pair (E,ϕ) consisting of a τ -G-bundle E over Y and a section
ϕ ∈ H0(Y, ad(E)⊗ Ω̃XT ). Since X is a curve, by §2.5.2, this is precisely the datum of a G-Higgs bundle. �

We now come to the key definition of the two Hitchin fibrations, one for H igG, one for BunG,v.

Definition 5.1.10. The G-invariant morphism χ : g→ c induces by twisting with Ω a natural morphism

[χΩ] : [gΩ/G]τ → cΩ.

Passing to the associated v-sheaves of sections over X and using Lemma 5.1.8, this induces the Hitchin map:

hτ : H igG,τ → A.

When τ = ét, we shall often drop the subscript ét from notation if this is clear from context.

Using the canonical Higgs field on v-G-bundles from Theorem 4.2.1, we also get a Hitchin map for BunG,v:
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Definition 5.1.11. The Hitchin map for BunG,v is the morphism of small v-stacks

(5.1.12) h̃ : BunG,v
ψ−→H igG,v

hv−→ A.

where hv was defined in Definition 5.1.10 and ψ in (4.3.3). We call h̃ the Hitchin map on the Betti side.

Remark 5.1.13. As explained in detail in [Heu22d, §8], one can more generally also define Hitchin mor-
phisms h̃ and h when X is any smooth rigid space and G is any rigid group. Here AX,G is in general a certain
v-sheaf (see [Heu22d, Definition 8.8]). It is clear that for X a smooth projective curve and for reductive G,
the definition of h agrees with the one given above. For h̃, this easily follows from Theorem 4.2.1.(1).

5.2. The commutative group J . We need some further constructions from [Ngô06], for which we switch
back to the setting of schemes over K for a moment. Recall that the Chevalley map χ : g→ c has a section

kos : c→ g,

unique up to conjugation, called the Kostant section. We refer to [Ngô06, §2] for more details on its definition.
Next, we form the centralizer

I = {(g, x) ∈ G× g | adg(x) = x}
as a relative group scheme over g. There is a natural G-action on I given by h · (g, x) = (hgh−1, adh(x)).

Let greg ⊆ g be the open locus where I → g has dimension = dim c. This is a dense subspace of g over
which I → g is smooth, see [Ngô06, Théorème 2.1]. By a Theorem of Kostant, the restriction of I to greg is
commutative [Kos63, Proposition 14]. Moreover, kos : c→ g factors through greg. We deduce:

Definition 5.2.1. The regular centralizer J := kos∗ I → c is a smooth commutative relative group scheme.

By [Ngô06, Proposition 3.2], there exists a canonical isomorphism of group schemes
(5.2.2) χ∗J |greg

∼−→ I|greg

over the regular locus greg of g, which extends uniquely to a homomorphism of group schemes over g
(5.2.3) a : χ∗J → I.
Since χ is G-invariant, the pullback χ∗J → g acquires a natural G-action such that χ∗J → J is G-invariant.
With respect to this action, a is G-equivariant: As χ∗J is flat, this can be checked over the dense open
subspace greg ⊆ g, where it is clear from the explicit description of a in [Ngô06, proof of Proposition 3.2].

There exists a natural Gm-action on I defined by t · (g, x) = (g, t · x). It induces a Gm-action on J such
that I → g and J → c and a are Gm-equivariant. As before, we form the twists of I,J by the Gm-torsor Ω:

IΩ = Ω×Gm I and JΩ = Ω×Gm J .
Due to the Gm-equivariance, we obtain morphisms IΩ → gΩ and JΩ → cΩ over X regarded as a scheme.

Definition 5.2.4. We define a smooth relative group scheme J over X ×A as the fiber product:
J //

��

JΩ

��
X ×A u // cΩ

where u is the universal section from Definition 5.1.3.

5.2.5. Once again, we now switch to the analytic setting and consider all of the above schemes as analytic
adic spaces over K without changing the notation. In particular, we consider J as a relative adic group
J → X × A. By passing to quotient stacks, the G-equivariant morphism IΩ → gΩ then descends to a
morphism of τ -stacks [IΩ/G]τ → [gΩ/G]τ over X. This is still a relative group because I → g is.

Second, the G-equivariant homomorphism a : χ∗J → I from (5.2.3) induces a homomorphism
(5.2.6) [aΩ] : [χΩ]∗JΩ → [IΩ/G]τ
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over [gΩ/G]τ , where [χΩ] : [gΩ/G]τ → cΩ is the map from Definition 5.1.10. This is the analogue in our
setting of the map in [Ngô06, Proposition 3.3]. Explicitly, in terms of the moduli description of [IΩ/G]τ
given in Remark 5.1.7, this map is associated to the natural G-torsor χ∗ΩJΩ → [χΩ]∗JΩ together with the
G-equivariant map aΩ : χ∗ΩJΩ = (χ∗J )Ω → IΩ obtained from a by twisting with Ω.

5.3. Abelianisation in terms of J . Let T ∈ PerfK , let Y ∈ XT,ét and (E,ϕ) a τ -G-Higgs bundle on Y .
Via Lemma 5.1.8, this corresponds to a section sE,ϕ : Y → [gΩ/G]τ over X. We denote by b the composition

(5.3.1) b : Y sE,ϕ−−−→ [gΩ/G]τ
[χΩ]−−−→ cΩ.

If Y = XT , then by Definition 5.1.10, this section is precisely b = h(E,ϕ).

Definition 5.3.2. We denote by Jb → Y the smooth relative group given by the pullback of JΩ along b:
(5.3.3) Jb //

��

JΩ

��
Y

b // cΩ

When Y = XT , this is equivalently the pullback of J → X ×A along the map XT → X ×A.

Note that Jb = b∗JΩ = s∗E,ϕ[χΩ]∗JΩ. Therefore, the pullback of (5.2.6) along s∗E,ϕ defines a canonical
morphism of sheaves of groups on Yτ :
(5.3.4) s∗E,ϕ[aΩ] : Jb → s∗E,ϕ[IΩ/G]τ ,

Proposition 5.3.5. In the above situation, we have a canonical isomorphism
s∗E,ϕ[IΩ/G]τ ' Aut(E,ϕ).

Proof. By Definitions 2.5.3 and 5.1.6, we need to see that the sections Y → E×G IΩ correspond naturally to
automorphisms of E preserving ϕ. To compute E ×G IΩ, consider the G-equivariant commutative diagram

I G× g (g, x)

g g× g (x, ad(g)(x))∆

defining I. We now twist this diagram over Gm with Ω and over G with E, then the result is clearly still
Cartesian. Recall that E ×G gΩ = ad(E) ⊗ Ω. Second, since the G-action on the first factor G on the top
right is via conjugation, one verifies directly that E ×G G = Aut(E). Consequently, the diagram becomes

E ×G I Aut(E)× ad(E)⊗ Ω (ψ, x)

ad(E)⊗ Ω ad(E)⊗ Ω× ad(E)⊗ Ω (x, ad(ψ)(x)).∆

Hence E ×G IΩ consists of pairs of an automorphism ψ of E and a section of ad(E) ⊗ Ω fixed by ψ. The
result follows as by Lemma 5.1.8, the section of ad(E)⊗ Ω associated to Y → [IΩ/G]τ → [gΩ/G]τ is ϕ. �

Definition 5.3.6. Let T ∈ PerfK , let Y ∈ XT,ét and let (E,ϕ) be a τ -G-Higgs bundle on Y with associated
map b : Y → cΩ as in (5.3.1). Composing the map (5.3.4) with the isomorphism from Proposition 5.3.5, we
obtain a canonical and functorial homomorphism of sheaves over Yτ
(5.3.7) aE,ϕ : Jb → Aut(E,ϕ).
If τ = ét, then the composition Jb → Aut(E,ϕ) → Aut(E) is represented by a homomorphism of smooth
relative groups over Y . In particular, it represents a morphism of v-sheaves on Y , where we can identify the
v-sheaf represented by Aut(E) with Aut(ν∗E). We shall still denote this morphism of v-sheaves by aE,ϕ.
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Using the canonical Higgs field from Theorem 4.2.1, we arrive at an analogous morphism for v-G-bundles:

Proposition 5.3.8. Let V be a v-G-bundle on XT with b = h̃(V ) ∈ A(T ), where h̃ is from Definition 5.1.11.
Let Jb → XT be the smooth relative group of (5.3.3). Then there exists a canonical homomorphism on XT,v

(5.3.9) aV : Jb → Aut(V ),
that can be uniquely characterised as follows: Locally on any étale map from a smoothoid Y → XT that
admits a toric smooth chart f such that V becomes small, the following diagram of sheaves on Yv commutes

Aut(E)
Jb

Aut(V )

aE,θ

aV

LS−1
f

where (E, θ) = LS−1
f (V ) is the Higgs bundle corresponding to V via the local correspondence of Theorem 4.1.6.

Proof. Let θV be the canonical Higgs field of Theorem 4.2.1. Definition 5.3.6 applied to the v-G-Higgs bundle
(V, θV ) yields a natural morphism

aV : Jb → Aut(V, θV )
of v-sheaves. The composition with the forgetful map Aut(V, θV )→ Aut(V ) yields the desired morphism aV .
Note that this forgetful map is an isomorphism over Yét by Theorem 4.2.1.(1).(a). It remains to see the com-
mutativity of the diagram: It suffices to check this on the toric v-cover Y∞ → Y . By Theorem 4.2.1.(1).(b),
LSf induces an isomorphism ν∗E|Y∞ = V |Y∞ that identifies θ with θV . This implies the commutativity. �

5.4. The tautological section τ . We now review the construction of the canonical section τ : c → LieJ
following [CZ15, §2.3]: The Lie algebra Lie(I|greg) ⊂ g × greg of the relative group scheme I|greg → greg

admits a canonical section
greg → Lie(I|greg) ⊆ g× greg, x 7→ (x, x).

This section is clearly Gm-equivariant for the natural Gm-action on both sides which is given by homotheties
on each factor. Via the Kostant section, using that kos∗ Lie I = LieJ , this induces a Gm-equivariant section

τ : c→ LieJ
where the Gm-action on LieJ is the one induced by the one on Lie(I|greg).

Recall now from (5.2.2) that over greg, there exists a canonical isomorphism χ∗J |greg
∼−→ I|greg . Let x ∈ g,

and let ax : Jχ(x) → Ix ⊂ G be the fibre of this isomorphism over x. Then by [CZ15, Lemma 2.2],
(5.4.1) dax(τ(χ(x))) = x.

We note that [CZ15] works over a finite field, but the proof still works over K.

5.4.2. Due to the Gm-equivariance, all of these constructions are compatible with twisting: The Ω×-twist
(LieJ ) ×Gm Ω× is isomorphic to Lie(JΩ) ⊗ π∗(Ω) viewed as a vector bundle over cΩ, where π : cΩ → X is
the canonical morphism. Twisting τ with Ω, we thus obtain a canonical section over cΩ:
(5.4.3) cΩ → LieJΩ ⊗ π∗(Ω).
By [Ngô10, Proposition 4.13.2 and its proof], the Lie algebra of the smooth group scheme JΩ over cΩ is

LieJΩ ' π∗(c∨Ω ⊗ Ω),
where (−)∨ is the dual vector bundle. For the group scheme J from Definition 5.2.4, this implies that
(5.4.4) Lie J = u∗ LieJΩ ' pr∗X(c∨Ω ⊗ Ω)
as π ◦u : X ×A→ X is given by prX . Since K is algebraically closed, so G is split, we have an isomorphism
(5.4.5) c∨Ω ' Ω−e1 ⊕ Ω−e2 ⊕ · · · ⊕ Ω−er ,
where e1, · · · , er denote the degrees of the invariant polynomials of g.
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Definition 5.4.6. Consider the geometric vector bundle over the Hitchin base A = AG,Ω

AJ,Ω := A×H0(X, c∨Ω ⊗ Ω⊗2)→ A.

Lemma 5.4.7. For any T ∈ PerfK , we have a canonical isomorphism
AJ,Ω(T ) = H0(X, c∨Ω ⊗ Ω⊗2)⊗K O(T ) = H0(XT , c

∨
Ω ⊗ Ω⊗2) = H0(XT ,Lie Jb ⊗ Ω).

Proof. This follows from flat base change applied to X → Spa(K), see [Heu24b, Theorem 3.18.2(b)]. �

Definition 5.4.8. Since A parametrises sections of cΩ over X, the global sections of the morphism (5.4.3)
over XT for each T ∈ PerfK can thus be assembled to a canonical section of the vector bundle AJ,Ω → A

τΩ : A→ AJ,Ω.

The crucial point is now that we can use the Jb-action on E of Definition 5.3.6 to recover the Higgs field:

Proposition 5.4.9. Let T ∈ PerfK and let (E,ϕ) be a τ -G-Higgs bundle on XT with Hitchin image b =
hτ (E,ϕ) : T → A. Then the canonical section τϕ := τΩ(b) ∈ H0(XT ,Lie Jb ⊗ Ω) has the property that

daE,ϕ ⊗ Ω : LieJb ⊗ Ω→ ad(E)⊗ Ω sends τϕ 7→ ϕ.

Proof. Since XT is reduced, we can verify the equality daE,ϕ(τϕ) = ϕ by checking that it holds in every
geometric fibre x : Spa(C,C+)→ XT . After choosing a local trivialisation of the pullbacks of E and Ω to x,
we can identify ϕ with a section of gΩ. Geometrically, this is a lift of the point Spa(C,C+)→ [g/G] defined by
x∗(E,ϕ) to a point ϕx : Spa(C,C+)→ g. Then (5.4.1) says that x∗daE,ϕ(τΩ(b)) = dax(τ(χ(ϕx))) = ϕx. �

5.5. The case of G = GLn. By way of example, assume now that G = GLn. In this case, the constructions
of this section can be made more explicit in terms of the spectral curve, as we will now explain.

We begin by describing A: For G = GLn, we can identify c with Spec(K[b1, · · · , bn]), where the Gm-action
on bi has weight i. Consequently,

A =
∏n
i=1 H0(X,Ω⊗i)⊗Ga.

Consider the finite morphism of degree n:
l := Spec(K[b1, · · · , bn, T ]/(Tn − b1Tn−1 + · · ·+ (−1)nbn))→ c.

Then we have J ' Resl/c Gm. In particular, for any b ∈ c(K), we have a Gm-equivariant decomposition

LieJb '
⊕n−1

i=0 KT
i,

where the Gm-action on T i has weight −i. Note that the right hand side is independent of b.
Let now T ∈ PerfK and set XT = X × T . Let b = (b1, . . . , bn) ∈ A(T ) be a point of the Hitchin base,

i.e. a tuple consisting of bk ∈ Ω⊗k(XT ). Let now (E, θ) with θ : E → E ⊗ Ω be a Higgs bundle on XT with
Hitchin image b, then we can think of the bi as the coefficients of the characteristic polynomial of θ.

Indeed, the morphism θ : O → End(E)⊗ Ω induces a morphism of OXT -algebras
θ : SymOXT Ω∨ → End(E).

Let Ib be the ideal sheaf of SymOXT Ω∨ generated by the image of the morphism

Ω⊗−n → Sym Ω∨, f 7→
∑n
i=1 fbi

where fbi is considered as a section of Ω⊗i−n.

Definition 5.5.1. The cover
π : Zb := Spa

XT
(Sym Ω∨/Ib)→ XT

is called the spectral curve. By the local description, it is a finite flat cover of XT of degree n. As it lives in
the cotangent bundle over XT , there is on Zb a tautological differential that we denote by τcan ∈ π∗Ω. By
construction, there is a natural map
(5.5.2) θ : π∗OZb → End(E).
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Applied to the universal case of Y = A, the above construction results in the universal spectral curve

π : Z → X ×A

from which we recover Zb as the pullback along b : T → A. The composition

π′ : Z → X ×A→ A

with the projection X ×A→ A is proper and all its fibres have dimension one. Moreover, there is an open
dense locus A◦ ⊆ A over which π′ is smooth proper with geometrically connected fibres. Let

B := π∗OZ on (X ×A)ét.

Then the relative rigid group J → X ×A of Definition 5.2.4 can in this case be described as representing
the subsheaf of units B×. In fact, unravelling the definitions, we see:

Lemma 5.5.3. Let T ∈ PerfK and let (E,ϕ) be a Higgs bundle on X × T . Then we have Jb = π∗O×Zb .
Under this identification, the morphism aE,ϕ from Definition 5.3.6 is the homomorphism

π∗O×Zb → Aut(E)

given by the units of the ring morphism θ described in (5.5.2).

Let us set B := ν∗B, then when we regard J as a v-sheaf, it is identified with the sheaf B× on (X ×A)v.

5.5.4. Finally, let us explicitly describe the sections τ and τΩ in the case of G = GLn. Let b ∈ c, and let
x = kos(b) ∈ greg its Kostant section. Then the derivative of (5.2.3) at x ∈ greg is

(5.5.5) dax : LieJb
∼−→ Lie Ix,

∑
ciT

i 7→
∑
cix

i, T 7→ x.

By (5.4.1) and (5.5.5), we deduce that τ(b) corresponds to 1 · T ∈ LieJb.
Second, by (5.4.4) and (5.4.5), the fibre of AJ,Ω at b is for G = GLn given by

AJ,Ω,b = ⊕n−1
i=0 H0(X, Ω̃X ⊗ Ω̃∨⊗iX ) = H0(X, Ω̃X)⊕H0(X,OX)⊕ · · · ⊕H0(X, Ω̃∨⊗n−2

X ).

It now follows from (5.5.5) after twisting with Ω that τΩ is given by τΩ(b) = (0, 1, 0, · · · , 0) ∈ AJ,Ω,b.

6. The non-abelian Hodge correspondence for v-stacks

We now combine the preparations from all previous sections to prove our first main result, Theorem 1.3.3.

6.1. The stacky relative Hodge–Tate sequence for J . We keep the assumptions of §5.1, i.e. K over Qp
is complete algebraically closed, X is a smooth projective curve over K and G is a connected reductive group.
As before, to simplify notation, we simply denote by Ω the line bundle Ω̃X on X from Definition 2.4.3.

6.1.1. Let J → X ×A be the commutative smooth relative group from Definition 5.2.4 and let Ĵ → X ×A
be its maximal topologically p-torsion subgroup in the sense of Proposition 3.2.4.

Recall that an object of Av is a perfectoid space T ∈ PerfK with a map b : T → A. Given such an object,
let XT := X × T and let Ĵb → XT be the pullback of Ĵ via b. By Proposition 3.2.4.(5), this is the maximal
topologically p-torsion subgroup of the relative adic group Jb → XT from (5.3.3).

Definition 6.1.2. Let Pv → A be the v-stack on Av of v-Ĵ-bundles, defined by

Pv := Bun
Ĵ,v

: (b : T → A) 7→ {Ĵb-torsors on (XT )v}.

The contracted product (see §2.2) defines an operation ⊗ on Pv turning it into a Picard stack (§2.6) on Av.

The Picard stack Pv admits a natural Hodge–Tate logarithm: Recall from §5.4.2 that there is a vector
bundle AJ,Ω → A whose sections over b are given by H0(XT ,Lie Jb ⊗OX Ω). This is a commutative smooth
relative group over A, and in particular we may regard it as a Picard stack on Av.
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Definition 6.1.3. There is a natural homomorphism of Picard stacks on Av

h̃J : Pv → AJ,Ω,

defined as follows: For any b : T → A, we send any v-Ĵb-bundle on XT first to its isomorphism class in
H1
v(XT , Ĵb) and then to the image under the Hodge–Tate logarithm of Theorem 3.3.1:

(6.1.4) HTlog
Ĵb

: H1
v(XT , Ĵb)→ H0(XT ,Lie Jb ⊗OX Ω).

Definition 6.1.5. Recall from Definition 5.4.8 the canonical section τΩ : A→ AJ,Ω. We define the v-stack
H → A as the fibre

H := h̃−1
J (τΩ) = A×τΩ,AJ,Ω Pv.

In other words, an object in H (b : T → A) is a v-Ĵb-bundle on XT,v with Hitchin image τΩ(b) in AJ,Ω(T ).

There is also an étale variant of the Picard stack Pv:

Definition 6.1.6. We define a prestack Pét → A by

Pét := Bun
Ĵ,ét : (b : T → A) 7→ {Ĵb-torsors on XT,ét}.

To simplify notation, we also write P := Pét. We can now formulate the main result of this section:

Theorem 6.1.7. (1) P is a Picard stack on Av and the natural maps

1→P →Pv
h̃J−−→ AJ,Ω → 0

define a short exact sequence of Picard stacks (Definition 2.6.2).
(2) The v-stack H is a P-torsor.

Proof. It follows from Theorem 3.3.1 (or more precisely, (3.3.6)) that P is exactly the fibre of 0 of the
homomorphism h̃J in Definition 6.1.3. In particular, it is itself a v-stack. This also shows the left-exactness.
For (1), it thus suffices to prove that h̃J is essentially surjective. By Lemma 2.6.5, this will also imply (2).

Let f : X × A → A be the projection and recall from §2.1 that µ : Av → AÉt denotes the natural
morphism of sites. Then the essential surjectivity follows from the following proposition:

Proposition 6.1.8. The Leray spectral sequence induces a short exact sequence of abelian sheaves on Av

(6.1.9) 1→ µ∗(R1fÉt ∗Ĵ)→ R1fv∗Ĵ
HTlog−−−−→ fv∗(Lie J ⊗ Ω)→ 0.

Let E := c∨Ω ⊗ Ω, a vector bundle on X. Then the last term is isomorphic to the rigid vector group

fv∗(Lie J ⊗ Ω) = H0(X,E ⊗ Ω)⊗K OA

Proof. The left-exact sequence is obtained by applying Theorem 3.3.1 to J → X ×A. Recall from (5.4.4)
that the vector bundle Lie J on X ×A is isomorphic to pr∗X E, where prX : X ×A → X is the projection.
We can thus apply [Heu24b, Theorem 3.18.(a)] to g := b : T → A to see that

fv∗(Lie J ⊗ Ω) ' H0(X,E ⊗ Ω)⊗K OA.

It remains to see the right-exactness of (6.1.9), for which we use the following:

Lemma 6.1.10. Let E = c∨Ω ⊗ Ω. Then for any n ∈ N, we have

Rnfv∗ Lie J = Hn
v (X,E)⊗OA, RnfÉt ∗ Lie J = Hn

ét(X,E)⊗OA.

Proof. Since Lie J = pr∗X E by (5.4.4), the statement follows from [Heu24b, Corollary 3.10]. �
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We now consider logJ which by Lemma 3.2.6 and Proposition 3.2.4.(3) fits into a short exact sequence

(6.1.11) 0→ J [p∞]→ Ĵ
log−−→ Lie J → 0

where on the right we regard Lie J as a rigid vector group over X × A. Applying Theorem 3.3.1 to the
commutative smooth relative group Lie J → X ×A, we obtain a left exact sequence
(6.1.12) 1→ µ∗(R1fÉt ∗ Lie J)→ R1fv∗ Lie J → fv∗(Lie J ⊗ Ω)→ 0.
It follows from Lemma 6.1.10 that this is isomorphic to the short exact sequence of rigid vector groups
(6.1.13) 0→ H1

ét(X,E)⊗OA → H1
v(X,E)⊗OA → H0(X,E ⊗ Ω)⊗OA → 0,

and is in particular exact. Indeed, any choice of flat lift X of X over B+
dR/ξ

2 induces a splitting sX of the
last map in (6.1.13), see [Heu23, Proposition 2.15]. We note that such a choice of a lift X always exists by
[Guo23, Proposition 7.4.4]. Thus X induces a splitting sX of (6.1.12).
Lemma 6.1.14. The morphism J [pn]→ X ×A is étale. Moreover, for any m ∈ N, we have

Rmfv∗J [pn] = ν∗Rmfét∗J [pn]
where ν : Av → Aét is the natural map. Here the sheaf Rmfét∗J [pn] is Zariski-constructible.
Proof. The first part holds by Lemma 3.2.2. Since J → X × A is algebraic by definition, it follows from
[Hub96, Theorem 3.7.2] that, Rmfét∗J [pn] is algebraic and moreover Zariski-constructible. The displayed
isomorphism now follows by an application of [Heu24a, Proposition 5.8.2]. �

Proposition 6.1.15. Applying R1fv∗ to the logarithm sequence (6.1.11) induces a short exact sequence of
sheaves on Av

1→ ν∗R1fét∗(J [p∞])→ R1fv∗Ĵ → R1fv∗ Lie J → 0.
Proof. It is clear that we obtain a long exact sequence, and it thus suffices to prove that for any m ≥ 0, the
boundary morphisms

∂ : Rmfv∗ Lie J → Rm+1fv∗J [p∞]
vanishes. To see this, we use that by Lemma 6.1.10, Rmfv∗ Lie J is an affine vector group represented by
Gda for some d ∈ N. On the other hand, by Lemma 6.1.14, the sheaf Rm+1fv∗J [pn] = ν∗Rm+1fét∗J [pn] is
Zariski-constructible. It follows from this that any map of the form ∂ is constant: Indeed, any section of
Rm+1fét∗J [pn] vanishes if it vanishes on fibres by [Hub96, Proposition 2.6.1]. Let now V be any Zariski-open
subset of A on which Rm+1fét∗J [pn] is locally constant, then ∂|V is represented by a morphism of relative
rigid groups over V . Since Gda is connected, we deduce that ∂|V is zero. By repeating this argument over
the complement of V in A, we conclude ∂ = 0, as we wanted to see. �

We now apply Theorem 3.3.1 to (6.1.11), which by naturality yields a commutative diagram:

(6.1.16)
1 µ∗(R1fÉt ∗ Lie J) R1fv∗ Lie J fv∗(Lie J ⊗ Ω) 0

1 µ∗(R1fÉt ∗Ĵ) R1fv∗Ĵ fv∗(Lie J ⊗ Ω) 0HTlog

log

The middle vertical map is surjective by Proposition 6.1.15. The map on the top right is surjective because
it admits a splitting sX. Hence the bottom morphism is surjective and show the exactness of (6.1.9). �

This finishes the proof of Theorem 6.1.7. �

Remark 6.1.17. In order to give a first indication of the role of τΩ from Definition 5.4.8 in this context,
let b ∈ A(K), then H (b) is a Ĵb-gerbe on Xét. Consider the Leray five term sequence of Ĵb for Xv → Xét:

0→ H1(Xét, Ĵb)→ H1(Xv, Ĵb)→ H0(X,Lie Jb ⊗OX Ω) λ−→ H2(Xét, Ĵb)→ H2(Xv, Ĵb).

Then one can show that the class of H (b) in H2(Xét, Ĵb) equals to λ(τΩ(b)).
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6.2. Twisting Higgs bundles.

6.2.1. There is a natural action of P on h : H igG → A (cf. [Ngô06, §4]): Let b : T → A be in Av and
let (E,ϕ) be a G-Higgs bundle in H igG(T ) with Hitchin image h(E,ϕ) = b. We still denote by aE,ϕ the
restriction of the homomorphism from Definition 5.3.6 to the subgroup Ĵb ⊆ Jb,

(6.2.2) aE,ϕ : Ĵb → Jb → Aut(E,ϕ).

We can use this to twist (E,ϕ) by any Ĵb-bundle F to obtain a new G-Higgs bundle (F ×Ĵb E,F ×Ĵb ϕ): To
see that this is well-defined, observe that the pushout F ×Ĵb Aut(E) along aE,ϕ is an Aut(E)-torsor, so

(6.2.3) F ×Ĵb E = (F ×Ĵb Aut(E))×Aut(E) E

is a contracted product of bitorsors in the sense of Definition 2.2.4. This shows that F ×Ĵb E is again a
G-torsor. Second, the Jb-action fixes ϕ, hence ϕ considered as a morphism O → ad(E)⊗Ω is Ĵb-equivariant.

6.2.4. Second, there is also a natural action of P on h̃ : BunG,v → A: Let b : T → A be in Av and let V
be a v-G-bundle on XT with h̃(V ) = b. By Proposition 5.3.8, there is a natural action

aV : Ĵb → Jb → Aut(V ).

Like in §6.2.1, we can use this to twist V by any étale Ĵb-bundle F to obtain a new v-G-bundle V ′ :=
ν∗F ×Ĵb V . Since F is étale, V ′ has the same Hitchin image as V , so this indeed defines an action over A.

We can now state the main result of this article, using the notion of twists from Definition 2.6.6:

Theorem 6.2.5. There exists a canonical equivalence of v-stacks over A, functorial in X,

(6.2.6) S : H ×P H igG
∼−→ BunG,v.

Proof. Let T be an affinoid perfectoid space over K, let (E,ϕ) be a G-Higgs bundle on XT and let b : T → A
be its Hitchin image. Exactly as in Definition 5.3.6, we still denote by aE,ϕ the composition of (6.2.2) with
the inclusion

aE,ϕ : Ĵb → Aut(E,ϕ) ↪→ Aut(E),

a morphism of v-sheaves represented by smooth relative groups. Note that ν∗E is an (Aut(E), G)-bitorsor
on XT,v. In particular, aE,ϕ defines a left-action by Ĵb on ν∗E. Let now F be an object of H (b), i.e. F is a
v-Ĵb-bundle on XT with Hitchin image τΩ(b). We will define S in terms of the twist

(6.2.7) (F, (E,ϕ)) 7→ F ×Ĵb ν∗E

(see §2.2). This is now a v-G-bundle on XT : Indeed, exactly as in (6.2.3), we can rewrite the twist as the
contracted product of bitorsors in the sense of Definition 2.2.4: F ×Ĵb ν∗E = (F ×Ĵb Aut(E))×Aut(E) ν∗E.
This shows that (6.2.7) defines a functor H ×H igG → BunG,v.

To see that this induces the desired functor S , we need to compute the effect of the P-action: Let
Q ∈ P(T ) be any Ĵb-bundle on XT,ét. Let (EQ := Q ×Ĵb E,ϕQ) be the G-Higgs bundle defined by the
action of Q on (E,ϕ), see §6.2.1. By associativity of twists, we then have a natural isomorphism

(6.2.8) (F ×Ĵb Q)×Ĵb ν∗E ' F ×Ĵb (Q×Ĵb ν∗E) ' F ×Ĵb ν∗EQ.

This shows that (6.2.7) induces the desired morphism of v-stacks S : H ×P H igG → BunG,v.
It remains to prove that S is an equivalence of categories and that S commutes with the structure mor-

phisms to A. For either, we now show that S is compatible with the local p-adic Simpson correspondence:
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Proposition 6.2.9. Let b : T → A be an object of Av and let Y ∈ XT,ét be a toric smoothoid space, equipped
with a fixed toric chart Y → T× T . Let (E, θ) be a G-Higgs bundle on XT such that h(E, θ) = b and let F
be an object of H (b). Then after replacing Y by an étale cover, there exists an isomorphism of v-G-bundles

LSf (E, θ) ∼= F ×Ĵb ν∗E,

where the left-action of Ĵb on ν∗E is via the homomorphism aE,ϕ : Ĵb → Aut(E) from §6.2.1.

Proof. After replacing Y by an étale cover, we may assume that (E, θ) is small with E ∼= G. By functoriality
of the exponential map from Proposition 3.2.1, we obtain a commutative diagram

(6.2.10)
Ĵb Aut(E)

Lie Jb ad(E)

aE,θ

daE,θ

exp exp

where the dotted arrows mean that the maps are both defined on an open neighbourhood of the identity.
Recall from Proposition 5.4.9 that we have a tautological section τθ ∈ H0(XT ,Lie Jb ⊗ Ω). As explained

in §4.1.1, we can use the chart f to associate to this a continuous homomorphism
ρf (τθ) : ∆f → Lie Jb(Y ).

After replacing ∆f by an open subgroup, and thus Y by the corresponding finite étale cover, we may assume
that ρf (τθ) has image in the open subgroup where the exponential converges. Consider the v-Ĵb-torsor F
on Y associated to the 1-cocycle exp(ρf (τθ)) : ∆f → Ĵb(Y ). Explicitly, this is defined for any W ∈ Yv by

F(W ) :=
{
s ∈ Ĵb(Y∞ ×Y W )

∣∣γ · s = exp(−ρf (τθ)(γ))s, ∀γ ∈ ∆f

}
⇒ (F ×Ĵb ν∗E)(W ) =

{
s ∈ E(Y∞ ×Y W )

∣∣γ · s = aE,θ(exp(−ρf (τθ)(γ)))s, ∀γ ∈ ∆f

}
.

Observe now that by Proposition 5.4.9, we have daE,θ(τθ) = θ. It follows that for any γ ∈ ∆f , we have
daE,θ(ρf (τθ)(γ)) = ρf (θ)(γ). We deduce from this and (6.2.10) that

aE,θ(exp(−ρf (τθ)(γ))) = exp(daE,θ(−ρf (τθ)(γ))) = exp(−ρf (θ)(γ)).
Comparing to the explicit definition of LSf (E, θ) in (4.1.10), it follows that

F ×Ĵb ν∗E = LSf (E, θ).
It remains to compare F and F . It is clear from the definition that HTlog(F) = τθ = HTlog(F ). By the
Leray sequence of Ĵ , (3.3.6) and Proposition 6.1.8, this implies F ' F on some étale cover of Y . �

Corollary 6.2.11. In the context of (6.2.7), we have h̃(F ×Ĵb ν∗E) = b.

We now continue with the proof of Theorem 6.2.5: To see that S is an equivalence, consider the stack
H −1 = A×−τΩ,AJ,Ω Bun

Ĵ,v

of v-Ĵ-bundles with Hitchin image −τΩ. By Theorem 6.1.7, this is a P-torsor, and it is an inverse of H in
the sense that the contracted product induces a canonical equivalence

H ×P H −1 'P.

It therefore now suffices to construct an inverse to H −1 ×P S of the form
H −1 ×P BunG,v →H igG.

To this end, let b : T → A be in Av, let F ∈H −1(b) and let V be an object of BunG,v(T ) with h̃(V ) = b.
Similar to the construction of S , we use the homomorphism aV : Ĵb → Aut(V ) from (6.2.4) to define

(6.2.12) (F, V ) 7→ Ṽ := F ×Ĵb V.
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Exactly as in §6.2.1, it is clear that Ṽ is a v-G-bundle on XT . The crucial point is now:

Lemma 6.2.13. The v-G-bundle Ṽ is étale-locally trivial, so E := ν∗Ṽ is a G-torsor on XT,ét with ν∗E = Ṽ .

Proof. Let Y ∈ XT,ét be toric with a chart f such that V|Y is small. By Lemma 4.1.7, we can find an étale
cover of XT by such Y . Then by Theorem 4.1.6 there is a small G-Higgs bundle (E, θ) over Y such that
V|Y ' LSf (E, θ). By Proposition 6.2.9, it follows that after replacing Y by an étale cover, we have

V |Y ' LSf (E, θ) ' F−1 ×Ĵb ν∗E.
In particular, the canonical isomorphism LSf : Aut(E, θ)→ Aut(V |Y ) is given by the natural Aut(E)-action
on ν∗E on the left. By Proposition 5.3.8, this isomorphism identifies aV with aE,θ. Hence

Ṽ |Y ' F ×Ĵb V |Y ' F ×Ĵb F−1 ×Ĵb ν∗E ' ν∗E. �

The canonical Higgs field ψV on V from Theorem 4.2.1 induces a Higgs field on Ṽ . Exactly as in 6.2.1,
one sees that this induces a Higgs field θ on E. We now define the morphism S −1 by sending (F, V ) to
(E, θ). The construction is clearly functorial, and one sees as in (6.2.8) that it factors through the quotient
by the antidiagonal P-action. Since ψV and θ have the same Hitchin image, S −1 is a morphism over A.

One now easily checks from the definition that H −1 ×P S and S −1 are inverse to each other: Indeed,
given an object F of H −1 and V in BunG,v, we have F−1 ×Ĵb F ×Ĵb V ' V . Hence (H −1 ×P S ) ◦S −1

is isomorphic to the identity map. The other direction can be seen in the same way. �

6.3. Functorialities of S in the reductive group. We have already stated as part of Theorem 6.2.5 the
functoriality of S in X. In this subsection, we discuss the functoriality of S with respect to homomorphism
of reductive groups f : G→ H, which is more subtle as it requires compatibility of Kostant sections.

6.3.1. Let f : G→ H be a homomorphism of connected reductive groups over K and let df : g→ h be the
associated morphism of Lie algebras. This induces a natural morphism of invariants cG → cH , compatible
with Chevalley maps. Consequently, there is a natural morphism of centralisers IG → IH over f and df :

IG g cG

IH h cH

χg

df

χh

Moreover, by twisting cG → cH with Ω, we also obtain a natural morphism of Hitchin bases AG → AH .
Suppose now that the Kostant sections of G, H are compatible with f in the sense that the diagram

(6.3.2) g
df // h

cG

kosG

OO

// cH

kosH

OO

commutes. Then the morphism IG → IH induces a homomorphism over cG of regular centralisers:
(6.3.3) JG → JH ×cH cG.

The tautological section τG : cG → LieJG (§5.4) is defined by the diagonal map of greg and the Kostant
section, and is therefore compatible with the derivative of (6.3.3) in the natural way.

Remark 6.3.4. The diagram (6.3.2) does not always commute. However, we do have commutativity in
many case of interest, for example for the determinant det : GLn → Gm and the canonical embeddings
SO2n+1 → SL2n+1, Sp2n → SL2n, SO2n+1 → SO2n+2. In fact, we have the following criterion:

Lemma 6.3.5. The Kostant sections are compatible with f : G→ H if and only if there is a regular nilpotent
element in g that is sent to a regular nilpotent element of h.
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Proof. We refer to [CG97, §3.2] for properties of regular nilpotent elements. Suppose e ∈ g is a regular
nilpotent element such that e′ := df(e) ∈ h is regular nilpotent. Let {e, ρ̌, ẽ} be a principal sl2 of g. Then
{e′, ρ̌′ = f(ρ̌), ẽ′ = f(e)} is a principal sl2 of h. Recall from [Ngô06, Théorème 2.1.3] that the Kostant section
identifies cG (resp. cH) with the subspace e+gẽ of g (resp. e′+hẽ

′ of h). Thus f is compatible with Kostant
sections. The converse is clear by considering the image of 0 ∈ c. �

Proposition 6.3.6. Let f : G→ H be a homomorphism of reductive groups over K such that f is compatible
with Kostant sections. Then there is a natural 2-commutative diagram of v-stacks over AG → AH :

HG ×PG H igG BunG,v

HH ×PH H igH BunH,v

SG

SH

Proof. The natural pushout functor defines morphism of stacks over PerfK,v:
H igG →H igH , BunG,v → BunH,v.

These morphisms are compatible via the Hitchin maps in the natural way.
By twisting (6.3.3), we obtain a natural homomorphism JG → JH ×AH

AG over X ×AG. By pushout
along this homomorphism, we thus obtain natural morphisms of Picard stacks over AG,v:

PG →PH ×AH
AG, HG →HH ×AH

AG.

These are compatible with the actions of P− on H−, H ig− and Bun−,v for − ∈ {G,H}. Since contracted
products are compatible with pushout of torsors, we deduce the proposition. �

6.4. The twisted isomorphism of coarse moduli spaces. Passing from v-stacks to sheaves of isomor-
phism classes, we get a version of Theorem 6.2.5 for coarse moduli spaces:

Definition 6.4.1. Let BunG,v be the v-sheafification of the presheaf given by sending T ∈ PerfK,v to the set
of isomorphism classes in BunG,v(T ), i.e. to H1

v(XT , G). We similarly define a v-sheaf HigG of isomorphism
classes of G-Higgs bundles on X × T up to v-sheafification in T . Both sheaves admit Hitchin maps to A.

Definition 6.4.2. Let P := µ∗R1fÉt ∗Ĵ , this is the sheaf on Av obtained from P by passing to isomorphism
classes and sheafifying. Let H be the v-sheaf on Av obtained in the same way from H .

Corollary 6.4.3. The v-sheaf H is a P-torsor on Av and there is a canonical isomorphism of v-sheaves
H×P HigG

∼−→ BunG,v.

Proof. The first part follows from Theorem 6.1.7, the second from Theorem 6.2.5 by sheafifying. �

We now explain that one can extract from our proof also a finer variant of this isomorphism, which is
however less canonical. Namely, for the formulation, we choose a flat lift X of X over B+

dR/ξ
2.

Definition 6.4.4. Let PX,v ⊆ R1fv∗Ĵ be the sub-v-sheaf defined as the equaliser of the two morphisms in
(6.1.16) defined by:

PX,v := Eq
(

R1fv∗Ĵ
sX◦HTlog
−−−−−−−−−−−−⇒

log
R1fv∗ Lie J

)
.

We then have the following analogue of Theorem 6.1.7, which we can deduce from its proof:

Proposition 6.4.5. We have a pullback diagram of short exact sequences of sheaves on Av

(6.4.6)
1 P[p∞] PX,v AJ,Ω 0

1 ν∗R1fét∗J [p∞] R1fv∗Ĵ R1fv∗ Lie J 0

HTlog

sX

log
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Proof. By Proposition 6.1.15, we have P[p∞] = ν∗R1fét∗J [p∞]. The map HTlog in (6.4.6) is surjective by
the proof of Proposition 6.1.15. It follows that the kernel of HTlog is contained in P[p∞]. On the other hand,
P[p∞] is clearly contained in PX,v. Hence ker HTlog = P[p∞]. This also shows the pullback property. �

Lemma 6.4.7. The morphism PX,v → AJ,Ω is a torsor under P[p∞]. In particular, it is of the form
PX,v = ν∗PX for some ind-constructible sheaf PX,v on Aét.

Proof. The first part follows from Proposition 6.4.5. The second part follows from the fact that by Lemma 6.1.14
and [Sch22, Proposition 14.7-14.8], the pullback morphism induces an isomorphism

H1
ét(A,R1fét∗J [p∞])→ H1

v(A,R1fv∗J [p∞]). �

Definition 6.4.8. Let HX → A be the fibre of PX,v → AJ,Ω over τΩ.

Lemma 6.4.9. HX is a P[p∞]-torsor on Av and there is a natural isomorphism HX ×P[p∞] P = H.

Proof. The first part follows from Lemma 6.4.7, the second from considering the fibre of (6.4.6) over τΩ. �

Corollary 6.4.10. There is a canonical isomorphism of v-sheaves on A

HX ×P[p∞] HigG
∼−→ BunG,v.

Proof. Combining Corollary 6.4.3 and Lemma 6.4.9, we have

HX ×P[p∞] HigG = HX ×P[p∞] P×P HigG = H×P HigG = BunG,v. �

The following is an alternative formulation of Corollary 6.4.10 in terms of pullbacks instead of twists:

Corollary 6.4.11. There is a canonical isomorphisms of v-sheaves on A

HigG ×A HX
∼−→ BunG,v ×A HX.

Proof. Since HX is a P[p∞]-torsor over A, there exists a canonical isomorphism HX×A HX ' P[p∞]×A HX.
The Corollary follows from applying ×AHX to both sides of Corollary 6.4.10. �

6.5. The case of G = GLn. Finally, let us make S slightly more explicit in the case of G = GLn. Let
T ∈ PerfK , let (E, θ) be a Higgs bundle on XT with Hitchin image b : T → A and let L ∈ H (b). Let
π : Zb → XT be the spectral curve over b from Definition 5.5.1 and recall from §5.5 that we can describe the
v-sheaf represented by Jb as being B× where B := ν∗πét∗OZb . Then we can regard L as being a B×-torsor
on XT , or in other words, an invertible B-module. Using Lemma 5.5.3 to describe aE,ϕ, we deduce:

Lemma 6.5.1. Under the above identifications, S sends L and (E,ϕ) to the v-vector bundle on XT

S (L, (E,ϕ)) = ν∗E ⊗B L.

From this perspective, at the heart of our p-adic Simpson functor lies a twisting construction which
generalises that of [Heu23] from GLn to general reductive groups, as well as to perfectoid families.

In the easiest special case of GLn = Gm, we have Zb = XT and hence B = OXT ,v. Thus H (b) is then
given by the v-line bundles L on XT with HTlog(L) = b, and S is thus given by twisting with L.

For G = Gm, the v-sheaf BunG,v is the v-Picard variety of [Heu22b], which is represented by a rigid
group. In this setting, Corollary 6.4.11 was previously proven in [Heu22b, Theorem 5.4], and the above
explicit description shows that these isomorphisms agree. Consequently, we may regard the Corollary as a
generalisation of this result to higher rank and further to reductive G.

To understand the precise relation of our moduli-theoretic p-adic Simpson correspondence Theorem 6.2.5
to the categorical p-adic Simpson correspondences of [Fal05][Heu22b][Heu23], the goal of the next section is
to provide a new moduli-theoretic perspective on the role of the exponential.
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7. The moduli space of exponentials

We now explain how we can derive from the twisted isomorphism of Theorem 6.2.5 an equivalence of
categories over strictly totally disconnected test objects, depending on the choice of an exponential.

For simplicity, let us first restrict attention to the case of G = GLn. In the notation of §5.5, the first main
goal of this section is to prove the following structure result about the v-sheaf R1fv∗Ĵ = R1fv∗B̂×:

Theorem 7.0.1. Let Λ := R1π′v∗Zp be the étale cohomology of the spectral curve π′ : Z → A. Then:
(1) There is a natural morphism of short exact sequences of v-sheaves on A:

1 R1fv∗J [p∞] R1fv∗Ĵ R1fv∗ Lie J 0

1 Λ⊗Zp µp∞ Λ⊗Zp Ĝm Λ⊗Zp Ga 0

∼

log

log

(2) The square on the right is a pullback square.
(3) The sheaf on the left is isomorphic to the étale sheaf lim−→n

ν∗(R1π′ét∗µpn).

Corollary 7.0.2. There is a natural Cartesian square of v-sheaves over A:

HX A

Λ⊗Zp Ĝm Λ⊗Zp Ga
log

Proof. This follows from the tower of commutative diagrams

HX PX R1fv∗Ĵ Λ⊗Z
p
Ĝm

A AJ,Ω R1fv∗ Lie J Λ⊗Z
p
Ga

HTlog log log

τΩ sX

in which the first square is Cartesian by Definition 6.4.8, the second square is Cartesian by Proposition 6.4.5
and the third square is Cartesian by Theorem 7.0.1. �

We deduce that on the level of K-points, splittings of log induce a splitting of HX. More generally:

Definition 7.0.3. Let S = Spa(R,R+) be a strictly totally disconnected perfectoid space. An exponential
for S is a continuous splitting of the logarithm map log : 1 +R◦◦ → R.

Corollary 7.0.4. Let S be a strictly totally disconnected space in Av. Then any exponential for S induces
a splitting of the torsor HX ×A S → S over S. In particular, it induces a section of HX(S)→ A(S).

Proof. This is immediate from Corollary 7.0.2 as evaluation on S preserves the Cartesianess. �

Remark 7.0.5. The third vertical map in Theorem 7.0.1.(1) is usually not an isomorphism, as we can see
on fibres Spa(K) → A: The reason is that for a finite flat morphism of rigid spaces g : Z → Y , the map
H1
v(Y, ν∗g∗O)→ H1

v(Z,O) is in general neither injective (e.g. Z non-reduced) nor surjective (e.g. g ramified).

For the proof of the Theorem, we start with some preparations.
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7.1. Étale cohomology of the spectral curve. For the results of this section, we can more generally let
π′ : Z → A be any proper finite type morphism of adic spaces over K whose fibres are all of pure dimension
one. Instead of considering Λ := R1π′v∗Zp, we can without changes consider more generally for any n ∈ N

Λn := Rnπ′v∗Zp.
Definition 7.1.1. Let G be any Zp-module on PerfK,v. For example, by Proposition 3.2.4.(6), this G could
be any topologically p-torsion rigid group like Ĝm or Ga. Then there is for any n ∈ N a natural morphism

ϕG : Λn ⊗Zp G → Rnπ′v∗G,
functorial in G, constructed as follows: There is a natural map on Av

ϕ0 : H omZ
p
(Zp,G)→H omZ

p
(Rnπ′v∗Zp,Rnπ′v∗G)

defined for any S ∈ Av by sending any homomorphism h : Zp|S := Zp × S → G|S := G × S over S to the

morphism on Sv obtained by sheafifying T 7→
(
Hn
v (Z×A T, π′∗Zp|T )

π′∗h|T−−−−→ Hn
v (Z×A T, π′∗G|T )

)
. Note that

H omZp(Zp,G) = G. The map ϕG is then induced by ϕ0 via the adjunction of ⊗ and H om.
The aim of this subsection is to show that ϕ− gives rise to the following isomorphisms:

Proposition 7.1.2. There is a natural isomorphism of short exact sequences

1 Λn ⊗Z
p
µp∞ Λn ⊗Z

p
Ĝm Λn ⊗Z

p
Ga 0

1 Rnπ′v∗µp∞ Rnπ′v∗Ĝm Rnπ′v∗OZ 0.

∼ ϕµp∞

log

∼ ϕ
Ĝm ∼ ϕGa

log

We begin with some lemmas on the v-cohomology of the spectral curve π′ : Z → A.
Lemma 7.1.3. Let n, k, l ∈ Z≥0.

(1) We have Rnπ′v∗Z/pkZ = ν∗Rnπ′ét∗Z/pkZ as sheaves on Av.
(2) We have a short exact sequence

(7.1.4) 0→ Rnπ′v∗Z/plZ
·pk−−→ Rnπ′v∗Z/pk+lZ→ Rnπ′v∗Z/pkZ→ 0.

(3) The natural map Λn → lim←−k Rnπ′v∗(Z/pkZ) is an isomorphism.
(4) We have Λn/pk = Rnπ′v∗(Z/pkZ).
(5) The Zp-module Λn is p-torsionfree.

Proof. Since π′ is a proper morphism of finite type, part (1) is an application of [Heu24a, Corollary 5.5].
To deduce (2), it thus suffices to prove the statement for Rnπ′ét∗ instead of Rnπ′v∗. It suffices to prove

the vanishing of the boundary maps of the natural long exact sequence. For this it suffices by [Hub96,
Proposition 2.6.1] to prove the vanishing in every geometric fibre of π′ : Z → A over Spa(L,L+) → A. It
thus suffices to see that for any proper rigid curve C → Spa(L,L+), the sequence

0→ Hn
ét(C,Z/plZ)→ Hn

ét(C,Z/pk+lZ)→ Hn
ét(C,Z/pkZ)→ 0

is exact. We may reduce to the case that C is connected. Second, we we may assume that L+ = L◦ since
finite étale sites are insensitive to passing from (L,L+) to (L,L◦). We are thus in the setting of classical
rigid spaces. Hence, for n > 2, the sequence vanishes. For n = 0, the statement is clear. For n = 2, the
statement follows from the following fact: For any m ∈ N, by [FvdP04, Proposition 8.4.1.(2)], [BLR90, §9.2,
Corollary 14], we have

H2
ét(C,Z/pmZ) ' Pic(C)/pm Pic(C) ' (Z/pmZ)r

for some r ∈ Z. Finally, the case of n = 1 follows from those of n = 0, 2 by the long exact sequence.
Assertion (3) follows from (2) using that the v-site is replete and [BS15, Proposition 3.1.10].
Finally, assertions (4), (5) follow from (3) by applying lim←−l∈N to (7.1.4). �
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Lemma 7.1.5. For any n, k ∈ Z≥0, the natural morphism of v-sheaves on Av

(Rnπ′v∗Z/pkZ)⊗Z/pkZ O+
X/p

k → Rnπ′v∗O+
Z/p

k

is an almost isomorphism. In the limit over k, it follows that the following map is an isomorphism:

ϕGa : Λn ⊗Zp Ga
∼−→ Rnπ′v∗OZ .

Proof. The first part is an application of [Heu24a, Theorem 4.3], a consequence of Scholze’s Primitive
Comparison Theorem. The second part follows using Lemma 7.1.3 by taking lim←−k and inverting p. �

Proof of Proposition 7.1.2. It is clear from functoriality that applying ϕ− to the log sequence defines the
desired commutative diagram. The left vertical map is an isomorphism because by Lemma 7.1.3.(4), we have

Rnπ′v∗µp∞ = lim−→k
(Rnπ′v∗Z/pkZ)⊗Z/pk µpk = lim−→k

Λn ⊗Z
p
µpk = Λn ⊗Z

p
µp∞ .

The right vertical map is an isomorphism by Lemma 7.1.5. The top sequence is short exact by Lemma 7.1.3.(5).
We can now prove the result by induction on n: Assume that the bottom sequence is left-exact, which is

clear for n = 0. Then the middle arrow is an isomorphism by the 5-Lemma, and the exactness of the bottom
row follows. We can deduce left-exactness for n+ 1, and continue inductively. �

7.2. Comparison along the spectral cover.

Definition 7.2.1. Let π′ : Z π−→ Y
f−→ S be any morphisms of rigid spaces over K and let G → Z be any

commutative smooth relative rigid group in the sense of §3. Then there is a natural map

ψ′G : R1fv∗H omY (Zp, πv∗G)→ R1π′v∗Ĝ,

functorial in G, defined as follows: By [Sch22, Lemma 14.4], we have π∗vZp = Zp, so we have a natural
adjunction isomorphism

πv∗H omZ(Zp,G) = H omY (Zp, πv∗G).
The Grothendieck spectral sequence for π′ = f ◦ π therefore defines a natural map

R1fv∗H omY (Zp, πv∗G)→ R1π′v∗H omZ(Zp,G).

This has the desired form because by Proposition 3.2.4.(6), we have H omZ(Zp,G) = Ĝ.

We apply this construction to the setup of the spectral curve π′ : Z π−→ X ×A f :=prA−−−−−→ A. In fact, for the
following definition, we can more generally allow π : Z → X ×A to be any finite flat cover.

Definition 7.2.2. The natural base-change map

B := ν∗πét∗OZ → πv∗OZ
induces by passing to units and applying H om(Zp,−) a natural map of v-sheaves on Y := X ×A

h : B̂× →H omY (Zp, πv∗Gm).

Here on the left, we again use Proposition 3.2.4.(6). In summary, we have thus constructed a natural map

ψGm : R1fv∗B̂×
R1fv∗h−−−−−→ R1fv∗H omY (Zp, πv∗Gm)

ψ′Gm−−−→ R1π′v∗Ĝm.

In exactly the same way, we obtain for B and B×[p∞] two morphisms of sheaves on Av

ψGa : R1fv∗B → R1fv∗H omY (Zp, πv∗Ga)
ψ′Ga−−→ R1π′v∗Ga,

ψµp∞ : R1fv∗B×[p∞]→ R1fv∗H omY (Zp, πv∗µp∞)
ψ′µp∞−−−−→ R1π′v∗µp∞ .
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Proposition 7.2.3. Let π : Z → X ×A be the spectral curve. Then there is a commutative diagram

1 R1fv∗B×[p∞] R1fv∗B̂× R1fv∗B 0

1 R1π′v∗µp∞ R1π′v∗Ĝm R1π′v∗O 0

∼ ψµp∞

log

ψGm ψGa

log

of sheaves on A with short exact rows. Moreover, the morphism ψµp∞ is an isomorphism.

Proof. The bottom row is short exact by Proposition 7.1.2. It is clear from functoriality of ψ′ and the
construction that ψ defines a morphism between these sequences. We observe that B×[p∞] = ν∗B×[p∞].
For this reason, the v-topological version of proper base-change [Heu24a, Corollary 5.5] shows that

R1fv∗B×[p∞] = ν∗R1fét∗B×[p∞], R1π′v∗µp∞ = ν∗R1π′ét∗µp∞ .

Under this identification, using that Ĵ = B̂× and Lie J = B, we see that the top row is short exact by
Proposition 6.1.15. It remains to prove that the natural map R1fét∗B×[p∞]→ R1π′ét∗µp∞ is an isomorphism.

For this, we use the Grothendieck spectral sequence for π′ = f ◦ π, which yields an exact sequence

0→ R1fét∗πét∗µpn → R1π′ét∗µpn → fét∗R1πét∗µpn .

Since π is finite, the last term vanishes by [Hub96, Corollary 2.6.6]. Finally, we have πét∗µp∞ = B×[p∞]. �

Proof of Theorem 7.0.1. Part (1) follows from combining Proposition 7.2.3 and Proposition 7.1.2. For (2), it
suffices to show that the left vertical map is an isomorphism, which follows from the corresponding statements
in Proposition 7.2.3 and Proposition 7.1.2. Part (3) follows from Lemma 6.1.14. �

7.3. Comparison along the cameral cover. We now generalise §7.2 to a reductive group G over K.

7.3.1. We first briefly review the cameral cover following [DG02, Ngô10, CZ17]. Recall that T is a fixed
maximal torus of G, that t is its Lie algebra and W denotes the Weyl group of G, which acts on T .

Via the Chevalley isomorphism K[t]W ' K[g]G, we have a Gm-equivariant, finite flat morphism t→ c of
degree |W|, equipped with a W-action. We twist this map with Ω and consider its base change

X̃ //

π

��

tΩ

��
X ×A // cΩ

with the universal section X×A→ cΩ. The morphism π is the universal cameral cover, and is equipped with
a W-action. We set π̃ = f ◦ π : X̃ → A. There exists a commutative smooth relative group J1 → X ×A:

(7.3.2) J1 := (π∗(T × X̃))W,

where the W-action is given by the diagonal action on T × X̃, see [Ngô10, § 2.4], [CZ17, § 3.1].
By [Ngô10, Proposition 2.4.2], there exists a homomorphism J → J1 over X × A which is an open

embedding. Its cokernel is an étale sheaf of 2-torsion abelian groups, supported on certain closed subschemes
of X ×A (see [CZ17, (3.1,3)] for an explicit description). If p 6= 2, then we have natural isomorphisms:

(7.3.3) J [p∞] ∼−→ J1[p∞], Lie J ∼−→ Lie J1.

From Proposition 3.2.4 and Lemma 3.2.6, we deduce that we have a natural isomorphism Ĵ
∼−→ Ĵ1.
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Theorem 7.3.4. Assume G is non-commutative and p - |W|. Set Λ := (R1π̃v∗ lim←−k T [pk])W, where W acts
diagonally on T [pk]× X̃. Then there is a natural morphism of short exact sequences of v-sheaves over A

1 R1fv∗J [p∞] R1fv∗Ĵ R1fv∗ Lie J 0

1 Λ⊗Zp µp∞ Λ⊗Zp Ĝm Λ⊗Zp Ga 0

∼

log

log

where f : X ×A→ A is the projection. In particular, the square on the right is a pullback square.
Exactly as in Corollary 7.0.2, Theorem 7.3.4 implies:

Corollary 7.3.5. Let S be a strictly totally disconnected space in Av. Then any exponential for S induces
a splitting of the torsor HX ×A S → S over S. In particular, it induces a section of HX(S)→ A(S).

For the proof, we need a variant of Lemma 7.1.3 for the cameral cover that incorporates theW -invariants:
Lemma 7.3.6. Let n, k, l ∈ Z≥0.

(1) We have R1fv∗((πv∗T [pk])W) ' (R1π̃v∗T [pk])W.
(2) We have a short exact sequence

(7.3.7) 1→ (R1π̃v∗T [pl])W ·pk−−→ (R1π̃v∗T [pk+l])W → (R1π̃v∗T [pk])W → 1.
(3) We have Λ ' lim←−k(R1π̃v∗T [pk])W and Λ/pkΛ ' (R1π̃v∗T [pk])W.
(4) The Zp-module Λ is p-torsionfree.

Proof. (1) Since π, π̃, f are algebraisable proper maps, we may by [Heu24a, Proposition 5.8] replace R1π̃v∗
with R1π̃ét∗ and work with algebraic étale cohomology. Set F = πét∗(T [pk]) over X ×A, equipped with the
diagonal W-action. By the Grothendieck spectral sequence for the composition

δ := (−)W ◦ fét∗ = fét∗ ◦ (−)W : Ab((X ×A)ét,Z[W])→ Ab(Aét),
we obtain natural maps:

R1fét∗(FW)→ R1δ(F)→ (R1fét∗F)W.

Since p - |W |, higher Galois cohomology of W with values in p-power torsion abelian groups vanishes.
Considering the full Grothendieck spectral sequences, we deduce by working on geometric fibres that these
maps are isomorphisms. Moreover, πét∗ is exact since π is finite. This shows assertion (1).

(2) The morphism π̃ : X̃ → A satisfies the assumptions of Lemma 7.1.3. By Lemma 7.1.3.(2) applied to π̃,
we have the short exact sequence before taking (−)W. After taking W-invariants, the assertion follows again
from the fact that higher Galois cohomology of W with values in p-power torsion abelian groups vanishes.

(3) By Lemma 7.1.3.(3), we have R1π̃v∗ lim←−k T [pk] ' lim←−k R1π̃v∗T [pk], so the first part follows by taking
W -invariants, which commutes with lim←−. The second part of (3) and (4) follow from (2) by taking lim←−l. �

Proof of Theorem 7.3.4. We first show that the left vertical arrow is an isomorphism. By (7.3.2) and (7.3.3),
we have J [pk] ' (πv∗T [pk])W, hence R1fv∗J [pk] ' (R1π̃v∗T [pk])W by Lemma 7.3.6.(1). Consequently,

Λ⊗Z
p
µp∞ ' lim−→k

Λ⊗Z
p
µpk ' lim−→k

(R1π̃v∗T [pk])W ' (R1π̃v,∗T [p∞])W,

where the second isomorphism follows from Lemma 7.3.6.(3).
We now choose an isomorphism T ' Grm and apply Proposition 7.1.2 to π̃ : X̃ → A for each factor of T .

From this we obtain a W-equivariant isomorphism of short exact sequences:

1 R1π̃v∗(lim←−k T [pk])⊗Z
p
µp∞ R1π̃v∗(lim←−k T [pk])⊗Z

p
Ĝm R1π̃v∗(lim←−k T [pk])⊗Z

p
Ga 0

1 R1π̃v∗T [p∞] R1π̃v∗T̂ R1π̃v∗ LieT 0.

∼

log

∼ ∼

log
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Taking W-invariants and using Lemma 7.3.6.(3), we arrive at the following commutative diagram:

(7.3.8)
1 Λ⊗Z

p
µp∞ Λ⊗Z

p
Ĝm Λ⊗Z

p
Ga 0

1 (R1π̃v∗T [p∞])W (R1π̃v∗T̂ )W (R1π̃v∗ LieT )W 0.

∼

log

∼

log

In this diagram, the bottom line is left-exact while the top line is short exact by Lemma 7.3.6.(4). Hence
the middle arrow is an isomorphism by the 5-lemma, and it follows that also the bottom line is short exact.

Using again that T ' Grm and applying Definition 7.2.2 to each of the factors, we obtain a canonical map:

ψT : R1fv∗Ĵ
1 → R1fv∗H omX×A(Zp, πv∗T ) ψ′T−−→ R1π̃v∗T̂

which clearly factors through (R1π̃v∗T̂ )W . Recall that Ĵ = Ĵ1. Since J [p∞] ' J1[p∞] ' (πv∗T [p∞])W by
(7.3.3), (7.3.2), we may define ψT [p∞] and ψLieT in the same way to obtain the desired commutative diagram:

1 R1fv∗J [p∞] R1fv∗Ĵ R1πv∗ Lie J 0

1 (R1π̃v∗T [p∞])W (R1π̃v∗T̂ )W (R1π̃v∗ LieT )W 0.

ψT [p∞]'

log

ψT ψLieT

log

The first row is exact by Proposition 6.1.15. The second row is exact by (7.3.8).
Combining this diagram with the isomorphism of short exact sequences (7.3.8) proves the Theorem. �

7.4. The homeomorphism between topological spaces. As the main application of the results in this
section, we can now deduce a topological comparison of moduli spaces, like in complex geometry.

For every v-sheaf F on Spa(K), one can endow the set of K-points F (K) with a natural topology, using
the condensed formalism of Clausen–Scholze [Sch]. Let us make this explicit in our specific context:

Definition 7.4.1. For any profinite space S, there is an associated v-sheaf S on Spa(K)v, which is repre-
sented by the strictly totally disconnected space Spa(Mapcts(S,K)). We thus obtain a condensed set

HigG : S 7→ HigG(S).

More precisely, to avoid set-theoretic issues, we fix a cut-off cardinal κ and only test by κ-small profinite sets
S. This endows HigG(K) = HigG(K) with a natural compactly generated topology: Explicitly, this is the
finest topology such that for every S → HigG, the associated map of K-points S → HigG(K) is continuous.

Similarly, we endow BunG,v(K) with a natural topology by considering the condensed set

BunG,v : S 7→ BunG,v(S).

Theorem 7.4.2. Assume either that G = GLn or that G is a reductive group with p - |W |. Then choices
of a flat lift X of X to B+

dR/ξ
2 and of an exponential Exp for K induce an isomorphism of condensed sets

HigG ∼−→ BunG,v.

On K-points, this induces a homeomorphism

S : HigG(K) ∼−→ BunG(K).

This is a very close analogue of Simpson’s homeomorphism between coarse moduli spaces in complex
non-abelian Hodge theory [Sim94, Theorem 7.18].

Proof. Since S is strictly totally disconnected, any exponential Exp for K induces an exponential for S

ExpS : Mapcts(S,K)→ Mapcts(S, 1 + mK),
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functorial in S. Here we use that mK = K◦◦, so Mapcts(S, 1 + mK) = Mapcts(S,K)◦◦. By Corollary 7.0.4,
respectively Corollary 7.3.5, we thus obtain natural splittings

sExp,S : A(S)→ HX(S)
for each S, or in other words, a morphism A → HX between the condensed sets associated to A and HX.
We deduce from this a morphism of condensed sets

HigG
sExp−−−→ HX ×A HigG ∼−→ HX ×A BunG → BunG.

As we can similarly construct a morphism into the other direction, this is an isomorphism of condensed sets.
By [Sch, Remark 1.6], this gives the desired homeomorphism between K-points. �

Remark 7.4.3. The bijection S from Theorem 7.4.2 can be shown to extend to an equivalence of categories,
at least after making further auxiliary choices. In the case of G = GLn, this works as follows: Unravelling the
definitions, we see from Lemma 6.5.1 that S is compatible with the categorical p-adic Simpson correspondence
S from [Heu23, Theorem 1.1]. Indeed, it shows that for any choice of Exp, the following diagram commutes,
where the vertical maps are the passage to groupoids of isomorphism classes:

{Higgs bundles on X of rank n} {v-vector bundles on X of rank n}

HigGLn(K) BunGLn,v(K).

S

S

Namely, the further choices for S are necessary to define notions of rigidifications of B×-torsors. Combining
ideas from [Heu23, §3] with the constructions of this article, it ought to be possible (but probably quite
technical) to define a notion of rigidifications also for strictly totally disconnected families. By the Tannakian
formalism [HWZ23, §3], this would lead to an extension of Theorem 7.4.2 to all linear algebraic G.

8. The v-stack of Higgs bundles

The goal of this subsection is to show that the v-stack of Higgs bundles H igG is essentially a classical
object. For this we need to compare the notion of analytic vector bundles on smoothoid spaces to algebraic
vector bundles on smooth schemes. The key is therefore to prove a perfectoid GAGA Theorem.

8.1. Perfectoid GAGA for curves. Throughout this section, let Xalg be any smooth proper variety over
K. We will later restrict attention to curves, but in the beginning, we can work in this greater generality.
Let X be the adic analytification of Xalg. We recall that there is a natural morphism of locally ringed
spaces X → Xalg over Spa(K,K+)→ Spec(K). Let now (R,R+) be any perfectoid K-algebra. To simplify
notation, we write

XR := X × Spa(R), Xalg
R := Xalg × Spec(R).

Consider Spa(R) as a locally ringed space. By the universal property of Spec(R), the identity R → R then
corresponds to a morphism of locally ringed spaces Spa(R,R+)→ Spec(R). As the fibre product in schemes
is the same as that in locally ringed spaces, we obtain from this a natural morphism of locally ringed spaces

h : XR → Xalg
R .

The goal of this subsection is to prove the following GAGA Theorem for vector bundles:

Theorem 8.1.1 (Perfectoid GAGA for curves). Let Xalg be any smooth proper variety over K, and let X
be the associated adic space. Let (R,R+) be any perfectoid K-algebra.

(1) Pullback along h defines a fully faithful exact tensor functor
−an : {vector bundles on Xalg × Spec(R)} → {analytic vector bundles on X × Spa(R)}.

(2) For any vector bundle F on Xalg
R , we have RΓ(Xalg

R , F ) = RΓ(XR, F
an).

(3) Assume moreover that Xalg is a curve. Then any analytic vector bundle on X × Spa(R) lies in the
essential image of −an after replacing Spa(R) by an open cover.



p-ADIC NON-ABELIAN HODGE THEORY FOR CURVES VIA MODULI STACKS 37

Remark 8.1.2. Part (3) should hold for any smooth proper variety X, and without passage to an open
cover. In fact, Scholze has informed us that this should follow from his joint work with Clausen, similarly
as in [CS, §13]. That it holds for line bundles in this generality is shown in [Heu21].

The proof of Theorem 8.1.1 will take the whole section. We first show (1) and (2). The proof of (3) is more
difficult, and we will prove it by reducing to the case of P1, where it can be seen by explicit computations.

Proof of Theorem 8.1.1.(1) and (2). We first note that for any vector bundle F on Xalg
R , the pullback

F an := h∗F = h−1F ⊗h−1O
X

alg
R

OX

is again a vector bundle. More generally, while there is in general no good theory of coherent sheaves on
adic spaces, it still makes sense to consider the pullback F an := h∗F of any quasi-coherent sheaf F on Xalg

R .

Proposition 8.1.3. For any vector bundle F on Xalg
R , we have RΓ(Xalg

R , F ) = RΓ(XR, F
an).

Proof. It suffices to see that the natural map RΓ(Xalg
R , F ) → RΓ(XR, F

an) induces an isomorphism on Hn

for every n ∈ N. Choose a rigid approximation R = lim−→i
Ri by Ri that are topologically of finite type over

K as in [Heu21, Proposition 3.17]. For any locally ringed space Y , let VB(Y ) be the set of isomorphism
classes of finite locally free modules on Y . Then by [SP, 02JO], we have

VB(Xalg
R ) = 2-colimiVB(Xalg

Ri
).

We may therefore assume that F is the pullback of a vector bundle Fi on Xalg
Ri

. For any j ≥ i, let Fj be the
base-change to Xalg

Rj
. We now apply [Heu24b, Proposition 3.2] to the diagram

XR Spa(R)

XRi Spa(Ri).

This says that there is a perfect complex K• on Spa(Ri) such that
Hn(XR, F

an) = Hn(K• ⊗Ri R) = lim−→j
Hn(K• ⊗Ri Rj) = lim−→j

Hn(XRj , F
an
j ),

where in the last step, we have applied [Heu24b, Proposition 3.2] in the rigid setup to Spa(Rj)→ Spa(Ri).
We can now apply Köpf’s relative rigid GAGA [Köp74] to see that

lim−→j
Hn(XRj , F

an
j ) = lim−→j

Hn(Xalg
Rj
, Fj) = Hn(Xalg

R , F ). �

Corollary 8.1.4. The functor −an from Theorem 8.1.1 is fully faithful.

Proof. Let E1, E2 be vector bundles onXalg
R . Working locally, we see that H om(E1, E2)an = H om(Ean

1 , Ean
2 ).

We now apply Proposition 8.1.3 to F := H om(E1, E2) and take H0 to deduce:

Hom(E1, E2) = H0(Xalg
R , F ) = H0(XR, F

an) = Hom(Ean
1 , Ean

2 ). �

This completes the proof of Theorem 8.1.1.(1) and (2). �

For the proof of Theorem 8.1.1.(3), we start with a lemma for which we do not yet need that X is a curve.

Lemma 8.1.5. In the setting of Theorem 8.1.1, let E be a quasi-coherent sheaf of finite type on Xalg
R and

assume that Ean is a vector bundle of rank r. Then E is also a vector bundle of rank r.

Proof. We first consider the case that (R,R+) = (C,C+) is an algebraically closed affinoid field. In this
case, a : XC → Xalg

C is the classical GAGA map which identifies C-points of XC with closed points of Xalg
C .

Moreover, given any such point x ∈ XC(C), the natural map between completed stalks O∧
Xalg
C
,a(x) → O

∧
XC ,x
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is an isomorphism. Since a finitely generated module E on a Noetherian scheme is locally free of rank r if
and only if all its completed stalks are free of rank r, this shows the result in this case.

In order to deduce the general case, assume that E on Xalg
R is not locally free of rank r. It suffices to

prove that there is a morphism ψ : (R,R+) → (C,C+) into an algebraically closed affinoid field such that
for the base change b : Xalg

C → Xalg
R , the sheaf b∗E is still not locally free of rank r. As ban∗Ean = (b∗E)an

is locally free of rank r, this will contradict the case of (R,R+) = (C,C+) already discussed.
To find ψ, we consider the Fitting ideals Fiti(E) ⊆ OXalg

R
: By [SP, 0C3G], E was locally free of rank r if

Fitr−1E = 0 and FitrE = OXalg
R
.

Assume first that there is an affinoid U = Spec(A) ⊆ Xalg such that there is 0 6= f ∈ Fitr−1E|U×Spec(R).
Then f is a section of O(U × Spec(R)) = A⊗K R. Recall that any s ∈ R vanishes if and only if s(x) = 0 for
all x ∈ Spa(R). Equivalently, this means that for any morphisms ψ : (R,R+) → (C,C+) into algebraically
closed affinoid fields, the image of s is = 0. Since f 6= 0, and A is a K-vector space, we deduce that there is
ψ : (R,R+) → (C,C+) such that ψ(f) 6= 0. Consider the base-change of E along b : Xalg

C → Xalg
R , then by

[SP, 0C3D], we have
Fitr−1(b∗E) = b−1(Fitr−1E) · OXalg

C
6= 0

since ψ(f) 6= 0. Hence b∗E is not locally free of rank r, which we have already seen is impossible.
It remains to see that FitrE = OXalg

R
. Suppose not, then we can find a closed point x of Xalg

R such that
Fitr(Ex) ( OXalg

R
,x. Locally on some affine open x ∈ U = Spec(B) ⊆ Xalg

R , this corresponds to a maximal
ideal mx such that Fitr(E|U ) ⊆ mx ( B. Since X is proper, the projection π : Xalg

R → Spec(R) is universally
closed, hence π(x) is itself a closed point, corresponding to a maximal ideal m ⊆ R. Then m ·B ⊆ mx, hence

Fitr(E|U×Spec(R)Spec(R/m)) ⊆ mxB/mB ( B/mB.

This means that the base-change of E to the fibre of Xalg
R over π(x) is not locally free of rank r.

We now use that by [Hub94, Lemma 1.4], there exists x ∈ Spa(R) with supp(x) = m. In particular, by
[Sch12, Propositions 2.25, 2.27], there is a morphism ψ : (R,R+) → (C,C+) into an affinoid field (wlog
algebraically closed) such that kerψ = m. Let b : Xalg

C → Xalg
R be the base-change, then since R/m → C is

a field extension, the module b∗E is still not locally finite free of rank r over Xalg
C . �

8.2. Perfectoid GAGA for P1. As the first case of Theorem 8.1.1, we now prove that it holds for X = P1:

Proposition 8.2.1. For any affinoid perfectoid K-algebra (R,R+), the analytification functor

(8.2.2) − an : {vector bundles on P1 × Spec(R)} → {vector bundles on P1 × Spa(R)}

is fully faithful, and any object lies in the essential image after replacing S = Spa(R) by an open cover.

Proof. For the proof, we take inspiration from Grothendieck’s description of vector bundles on P1, and then
from Serre’s proof of the GAGA Theorems: We consider the cover of P1 by two open unit discs B1 around
0 and ∞ with intersection a unit tyre U = Spa(K〈T±1〉). Let us denote these by B1(0) and B1(∞). We set
S = Spa(R,R+) and write V for the cover of P1

S by the base-changes B1
S(0) and B1

S(∞) to S.

Lemma 8.2.3. Let d ∈ N. Any vector bundle on BdS becomes trivial after replacing S by an open cover.

Proof. We can writeR〈X1, . . . , Xd〉 = (lim−→R+
i 〈X1, . . . , Xd〉)∧[ 1

p ] where Si = Spa(Ri) is a rigid approximation
of S as in the proof of Proposition 8.1.3. By [GR03, Corollary 5.4.41], the pullback on isomorphism classes

lim−→i
VB(Si × Bd)→ VB(S × Bd)

is a bijection. It therefore suffices to prove the statement when S is an affinoid rigid space. Here it holds by
a result of Lütkebohmert, based on the work of Quillen–Suslin [Lüt77, Satz 1]. �
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Let E be a vector bundle on P1
S of rank r. By Lemma 8.2.3, we may assume after replacing S by an open

cover that E is free over B1
S(0) and B1

S(∞). Hence we may assume without loss of generality that E is glued
from two trivial vector bundles along U × S. Such vector bundles are described by the double coset
(8.2.4) Ȟ1(V,GLr) = GLr(R〈T 〉)\GLr(R〈T±1〉)/GLr(R〈T−1〉).

Lemma 8.2.5. We have H1
ét(P1

S , 1 + mKMn(O+)) = 1.

Proof. We first note that, as P1 has no non-split connected finite étale covers, [Heu22b, Proposition 3.9] says

(8.2.6) H1
ét(P1

S ,O+/p) a=H1
ét(Spa(R),O+/p) a=0.

To simplify notation, let us write Hi(−) for Hi
ét(P1

S ,−). Consider the long exact sequence
H0(GLn(O+))→ H0(GLn(O+/mK))→ H1(1 + mKMn(O+))→ H1(GLn(O+))→ H1(GLn(O+/mK))

of pointed sets. By considering GLn(O+) ⊆ Mn(O+) as a subsheaf, we deduce from (8.2.6) that the first
map is surjective. It thus suffices to see that the last map has trivial kernel. For this we argue as in
[Heu22a, Lemma 2.24]: Let V be any finite locally free O+-module V for which V/mK is trivial. Then since
V/mK = lim−→ε→0 V/p

ε, already V/pε is trivial for some ε > 0. We consider the long exact sequence of

0→ mKV/p
ε → V/pnεmK → V/p(n−1)εmK → 0

for n ∈ N. Since H1
ét(mKV/pε) = 0 by (8.2.6), we see inductively that we may find compatible lifts of

generators of V/pε to V/pnε for every n. In the limit, this shows that V is trivial. �

Lemma 8.2.7. Any element of (8.2.4) is represented by some A ∈ GLr(R〈T±1〉) such that A ∈ T−mMr(R〈T 〉).

Proof. To simplify notation, for any Huber pair (S, S+) over K, let us write U(S) := 1 +mKMr(S+). Then
GLr(R〈T±1〉) = GLr(R[T±1])U(R〈T±1〉)

because the first factor is dense in GLr(R〈T±1〉), while the second factor is an open subgroup. Write
A = A0A1 such that A0 ∈ GLr(R[T±1]) and A1 ∈ U(R〈T±1〉). We consider the double-coset

(8.2.8) Ȟ1(V, U) = U(R〈T 〉)\U(R〈T±1〉)/U(R〈T−1〉).
This can be interpreted as Čech cohomology, which injects into H1(P1

S , 1 + mKMr(O+)). But this is trivial
by Lemma 8.2.5, hence (8.2.8) is trivial. It follows that we can write A1 = A+

1 A
−
1 for some A+

1 ∈ U(R〈T 〉)
and A−1 ∈ U(R〈T−1〉). We then see that in (8.2.4), A = A0A

+
1 A
−
1 represents the same class as A′ := A0A

+
1

because A−1 ∈ GLr(R〈T−1〉). Then A′ has the desired property. �

Lemma 8.2.9. Let E be a vector bundle on P1
S of rank r. Then after replacing S by an open cover, we can

for any m ∈ N large enough find s1, . . . , sr ∈ H0(P1
S , E(m)) such that the map s1, . . . , sr : Or → E(m) is an

isomorphism over B1
S(∞) ⊆ P1

S.

Proof. By Lemma 8.2.3 we can assume that E is defined by an element A ∈ GLr(R〈T±1〉). By Lemma 8.2.7,
we can find m such that TmA ∈ Mr(R〈T 〉). It is clear that E(m) corresponds to the element TmA. Thus
after replacing E by E(m), we may assume that A ∈Mr(R〈T 〉).

Considering the Čech complex of the cover V by B1
S(0) and B1

S(∞), we see that

(8.2.10) H0(P1
S , E) = ker

(
R〈T 〉r ⊕R〈T−1〉r f,g 7→f−A·g−−−−−−−→ R〈T±1〉r

)
.

Since A ∈ Mr(R〈T 〉), the standard basis vectors ei = (0, . . . , 1, . . . , 0) of R〈T−1〉r satisfy Aei ∈ R〈T 〉, thus
(Aei, ei) is contained in the right hand side for i = 1, . . . , r. This defines the desired sections s1, . . . , sr. As the
ei generate R〈T−1〉r, and E|BS(∞) gets identified with R〈T−1〉r, the s1, . . . , sr generate E over BS(∞). �

Proposition 8.2.11. Let E be a vector bundle on P1
S of rank r. Then after replacing S by an open cover,

we can find n,m, r, s ∈ N for which there is a right-exact sequence
(8.2.12) O(−n)t → O(−m)s → E → 0.
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Proof. We first apply Lemma 8.2.9. We then apply Lemma 8.2.9 once again also to q∗E, where q = ( 0 1
1 0 ) is

the automorphism exchanging BS(∞) and BS(0), to find sr+1, . . . , s2r such that sr+1, . . . , s2r : Or → E(m)
is an isomorphism over B1

S(0) ⊆ P1
S . Forming the sum of both maps and twisting by (−m), it follows that

s1, . . . , s2r : O2r(−m)→ E

is surjective. Moreover, by construction, it becomes split surjective on each of B1
S(0) and B1

S(∞), where E
is free. Hence the kernel F is again a vector bundle. We then repeat the above construction for F . �

Now we are ready to prove Proposition 8.2.1: Let E be any vector bundle on P1
S . After replacing S

by an open cover, we can find a right exact sequence as in Proposition 8.2.11. Note that the morphism
φ : O(−n)t → O(−m)s in (8.2.12) is a morphism between algebraic vector bundles. By Corollary 8.1.4, it is
therefore analytification of a map φalg. Let E0 be its cokernel.

The functor −an of (8.2.2) is right-exact, being the pullback of a morphism of locally ringed spaces. Hence

Ean
0 = coker(φalg)an = coker(φ) = E.

Finally, by Lemma 8.1.5, it follows that E0 is finite locally free. Hence E is in the essential image of −an. �

8.3. The case of curves. Finally, we deduce the GAGA result for curves from GAGA for P1:

Proof of Theorem 8.1.1.(3). The choice of any non-constant rational function f ∈ K(X) defines a finite flat
map f : X → P1. Let S = Spa(R), then fS : X × S → P1 × S is still a finite locally free map of smoothoid
adic spaces, i.e., A := fS∗O is a finite locally free module on P1 × S. It follows that any vector bundle E
on X × S defines a finite projective A-module M = fS∗E on P1 × S. Consequently, M is a vector bundle
on P1 × S. Hence, after replacing S by an open cover, we can by Proposition 8.2.1 find an algebraic vector
bundle Malg on P1 × Spec(R) such that (Malg)an = M . We then clearly have E nd(Malg)an = E nd(M).

Let now falg
S : Xalg×Spec(R)→ P1×Spec(R) and Aalg := falg

S∗ O, then (Aalg)an = A. By Corollary 8.1.4,
the map A → E nd(M) encoding the A-module structure now comes from a morphism Aalg → E nd(Malg).
Using that −an is faithful, we see that this is a ring homomorphism, endowing Malg with an A-module
structure. Since falg

S is affine, this defines a finitely generated quasi-coherent sheaf Ealg on Xalg × Spec(R).
By construction, we have (Ealg)an = E. By Lemma 8.1.5, we deduce that Ealg is a vector bundle. �

This completes the proof of Theorem 8.1.1. �

8.4. Comparison to the algebraic stack of Higgs bundles. We deduce from Theorem 8.1.1:

Corollary 8.4.1. Let Spa(R) be a totally disconnected perfectoid space. Let G be any linear algebraic group
over K. Then the following natural GAGA functors are equivalences of categories:

−an : {G-torsors on (Xalg × Spec(R))ét} ∼−→ {G-torsors on (X × Spa(R))ét}(8.4.2)

−an : {G-Higgs bundles on (Xalg × Spec(R))ét} ∼−→ {G-Higgs bundles on (X × Spa(R))ét}(8.4.3)

Proof. For (8.4.2), the case of GLn holds by Theorem 8.1.1 as any open cover of Spa(R) splits. The general
case follows by the Tannakian formalism: This says that the left hand side is equivalent to the category of
exact tensor functors

Rep(G)→ Bun(Xalg × Spec(R)).
Due to the case of GLn, we have Bun(Xalg × Spec(R)) = Bunan(X × Spa(R)). But by [SW20, Theorem
19.5.2], exact tensor functors Rep(G)→ Bunan(X × Spa(R)) are equivalent to G-torsors on X × Spa(R).

For (8.4.3), recall that a Higgs field on a G-torsor E (algebraic or analytic) is a section of ad(E)⊗ Ω̃. If
now E is an algebraic G-torsor on Xalg × Spec(R), then ad(E)an = ad(Ean). Thus by Theorem 8.1.1.(3),

H0(Xalg × Spec(R), ad(E)⊗ Ω̃) = H0(X × Spa(R), ad(Ean)⊗ Ω̃). �
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Definition 8.4.4. Let S be any fppf-stack fibered over the category of schemes over K. Following [Heu21],
there is a natural way to associate to this a v-stack S♦: This is defined as the v-stackification of the functor

h : Perfaff
K,v → Grp, Spa(R) 7→ S(R).

This clearly defines a natural diamondification functor
(8.4.5) −♦ : {algebraic stacks over K} → {small v-stacks over K}.

In terms of this language, the goal of this subsection is to prove the following:

Theorem 8.4.6. Let X be a smooth projective curve over K. Let G be any linear algebraic group over K.
(1) Let Bunalg

G be the algebraic stack of (étale) G-bundles on X. Then the following natural map is an
isomorphism of v-stacks:

(Bunalg
G )♦ ∼−→ BunG,ét.

(2) Let H igalg
G be the algebraic stack of G-Higgs bundles on X. The following natural map is an

isomorphism of v-stacks:
(H igalg

G )♦ ∼−→H igG,ét.

Proof. Recall that BunG,ét is a v-stack by [Heu22d, Theorem 1.4]. There is a natural analytification functor
(Bunalg

G )♦ → BunG,ét. We need to see that this is an equivalence.
Since the definition of (Bunalg

G )♦ involves v-stackification, we may restrict the test category to totally
disconnected spaces S = Spa(R), which form a basis of Perfaff

K,v. In this case, the natural functor

Bunalg
G (R) ∼−→ BunG,ét(R)

is an equivalence by (8.4.2). This proves part 1. Part 2 follows in exactly the same way from (8.4.3). �

8.5. The Hitchin fibration over the regular locus. As an application, we get a version of Theorem 6.2.5
for rigid analytic moduli spaces: In this subsection, let X be a smooth projective curve of genus g ≥ 2, and
G = GLn for some n ∈ N. Then there is a non-empty Zariski-open locus A◦ ⊆ A where the spectral curve
Z → A from §5.5 is smooth proper with connected geometric fibres [BNR89, Remarks 3.1, 3.5].

Definition 8.5.1. We call A◦ the regular locus of the Hitchin base. Let Z◦ := Z ×A A◦ → A◦ and
H ig◦n ⊆H ign, Hig◦n ⊆ Hign

be the respective preimages of the regular locus A◦ under the Hitchin morphism h (Definition 5.1.10). For
any T ∈ PerfK , we call a Higgs bundle (E, θ) over XT regular if h(E, θ) ∈ A◦(T ). One can show that the
locus H ig◦n describes the part of H ign where θ is regular semi-simple as an endomorphism of E.

Similarly, let
Bun◦n,v ⊆ Bunn,v, Bun◦n,v ⊆ Bunn,v

be the preimages of the regular locus under h̃ (Definition 5.1.11). We call a v-bundle V regular if h̃(V ) ∈ A◦.

There is an analogue in our p-adic analytic setup of a well-known result of Beauville–Narasimhan–
Ramanan, called the “BNR correspondence”. This construction is often referred to as “abelianisation”,
since it reduces the non-abelian Hodge theory of the group GLn to that of the abelian group Gm:

Proposition 8.5.2. Let T ∈ PerfK and let (E, θ) be a regular Higgs bundle on XT with Hitchin image
b : T → A◦. Let π : Zb → XT be the fibre of the spectral curve over b. Then there is a line bundle L
on Zb such that (E, θ) ' π∗(L, τcan) where τcan is the tautological section of π∗Ω̃1

XT
from Definition 5.5.1.

Moreover, π∗ induces an isomorphism Aut(L) ' Aut(E, θ).

Proof. Due to Theorem 8.1.1, this follows from the algebraic case [BNR89, Proposition 3.6]. More precisely,
due to the localisation on T in Theorem 8.1.1, we a priori get the statement locally on T , but we can then
glue the local line bundles using the isomorphism Aut(L) ' Aut(E, θ). �
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Proposition 8.5.3. (1) The regular Hitchin morphism h : H ig◦n → A◦ is canonically isomorphic to
the relative Picard groupoid

PicZ◦|A◦ → A◦.
(2) In terms of coarse moduli spaces, the Hitchin map H : Hig◦n → A◦ is canonically isomorphic to

(PicZ◦|A◦)♦ → A◦

where (PicZ◦|A◦)♦ is the analytification of the algebraic Picard variety of Z◦ → A◦.

Proof. Part (1) is immediate from Proposition 8.5.2. Part (2) follows from this using Theorem 8.1.1. �

In particular, this shows that Hig◦n is represented by a smooth rigid space. Moreover, we deduce the
following, which justifies calling the analytic Hitchin morphism a “fibration”:

Corollary 8.5.4. Let Hig◦n,d ⊆ Hign be the subsheaf of isomorphism classes of regular Higgs bundles of
degree d. Then the geometric fibres of the Hitchin morphism H : Hig◦n,d → A◦ are abelian varieties.

8.6. The regular Hitchin fibration on the Betti side. We now turn our attention to the coarse moduli
space Bun◦n,v of regular v-vector bundles.

Lemma 8.6.1. The restriction of the sheaf HX on Av from Definition 6.4.8 to the regular locus A◦ is an
étale-locally constant sheaf H◦X. In particular, it is represented by a relative rigid group in A◦ét.

Proof. By Corollary 7.0.2, the map HX → Av is an étale torsor under Λ⊗ µp∞ . By Theorem 7.0.1, it thus
suffices to prove that for every m ∈ N, the sheaf R1π∗µpm is étale-locally constant over the regular locus.
Since over the regular locus π is smooth and proper, this holds by [SW20, Theorem 10.5.1].

It follows that H◦X → A◦ defines an object in A♦
ét = Aét. Hence it is represented by a rigid space. �

We now come to the version of our main theorem in which the “twisted isomorphism” of moduli spaces
takes its strongest geometric incarnation, as a morphism of rigid spaces between coarse moduli spaces:

Theorem 8.6.2. Let X be a smooth projective curve of genus g ≥ 2 and let n ∈ N.
(1) The v-sheaf Bun◦n,v is represented by a smooth rigid space over K.
(2) The Hitchin fibration H̃ : Bun◦n,v → A◦ over the regular locus is a torsor under P◦ := (PicZ◦|A◦)♦.

In particular, its geometric fibres are disjoint unions of abelian varieties.
(3) There is a natural isomorphism of rigid spaces

H◦X ×P◦[p∞] Hig◦n
∼−→ Bun◦n,v.

Corollary 8.6.3. There is a natural isomorphism of rigid spaces

Hig◦n ×A◦ H◦X
∼−→ Bun◦n,v ×A◦ H◦X.

Remark 8.6.4. More generally, for reductive G, using [DG02] and the arguments below, representability
and an analogue of Theorem 8.6.2 holds for HigG, BunG,v over the very regular locus of AG [Ngô06, §4].

Remark 8.6.5. Combined with Proposition 8.5.3, this says that both Hig◦n and Bun◦n,v are P◦-torsors
over A◦ via their respective Hitchin fibrations. But the former torsor is split, whereas the latter is non-split:

Example 8.6.6. Assume n = 1, then A = A◦ = H0(X, Ω̃) ⊗ Ga and Z = X and P◦ = P = (PicX)♦. In
this case, Hign = P×A, while Bun1,v sits in a non-split short exact sequence of rigid group varieties

0→ P→ Bun1,v → A→ 0.

This case was previously shown in [Heu21, Theorem 1.3] and [Heu22b, §5], so we may regard Theorem 8.6.2
as a generalisation from Gm to the non-abelian case of GLn, at least when X is a curve.
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Proof. We have already seen in Corollary 6.4.10 that we have an isomorphism as in (3) on the level of
v-sheaves. Observe now that we can interpret Proposition 8.5.3 as saying that Hig◦n is a trivial torsor under
P◦. Since HX is an étale P[p∞] := (PicZ|A)♦[p∞]-torsor, it follows formally that Bun◦n,v is the pushout

(8.6.7) Bun◦n,v ' H◦X ×P◦[p∞] Hig◦n ' H◦X ×P◦[p∞] P◦,
along P◦[p∞]→ P◦. This proves (2). It remains to see (1). We deduce this from the following:

Lemma 8.6.8. Let S be any rigid space and let G → S be a commutative smooth relative group. Let F be
an abelian sheaf on Sv that fits into a short exact sequence of abelian sheaves on Sv

0→ G[p∞]→ F → Gda → 0
for some d ∈ N. Then the pushout F ×G[p∞] G→ S is represented by a smooth morphism of rigid spaces.

Proof. This is an axiomatisation of the argument in [Heu21, Corollary 2.9.5]: The statement is local on S,
so we may assume that S is quasi-compact. For any r ∈ Z, write Br := prG+d

a for the closed disc of radius
|pr|. Let Fr be the pullback of F to Br. By compactness, we then have

Ext1
S(Br, G[p∞]) = lim−→j

Ext1
S(Br, G[pj ]),

hence there is j such that Fr admits a reduction of structure group to G[pj ].
Consider now the morphism [pj ] : F → F , which induces a morphism of short exact sequences

0 G[p∞] Fr Br 0

0 G[p∞] Fr+j Br+j 0.

pj pj pj∼

This can be interpreted as the pushout along [pj ] : G[p∞]→ G[p∞]. Since the class of Fr in Ext1
S(Br, G[p∞])

is pj-torsion, this shows that the bottom sequence is split.
Let now Pr be the pushout of Fr along G[p∞] → G. Then since the bottom sequence is split, we have

Pr+j = G×S Br+j , which is consequently represented by a rigid space that is smooth over S.
Considering the pushout of the diagram over the morphism [pj ] : G→ G, which is étale by Lemma 3.2.2,

we see that the map Pr → Pr+j is an étale morphism of v-sheaves. Since P♦
r+j,ét = Pr+j,ét, this shows that

also Pr is representable and smooth over S. Since P is glued from the Pr, this shows the result. �

Recall now that by construction in Definition 6.4.4 and Definition 6.4.8, there is a Cartesian diagram

(8.6.9)
HX A

R1fv∗B̂× R1fv∗B.

sX◦τ

By Lemma 6.1.10, the term on the bottom right is isomorphic to Gda×A for some d. By Proposition 6.1.15,
the bottom morphism is surjective and has kernel R1fv∗B×[p∞]. When we now consider the restriction of
this diagram to A◦, then (R1fv∗B×[p∞])|A◦ = P◦[p∞]. Hence we may apply Lemma 8.6.8 to see that

M := R1fv∗B̂×|A◦ ×P◦[p∞] P◦

is represented by a smooth rigid space over A◦. On the other hand, using (8.6.7), we now deduce from
applying −×P◦[p∞] P◦ to the left hand side of (8.6.9) that we have a Cartesian diagram

Bun◦n,v A◦

M (R1fv∗B)|A◦ .

H̃

sX◦τ
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This exhibits Bun◦n,v as the fibre product of rigid spaces, hence it is itself represented by a rigid space.
Moreover, since the bottom morphism is smooth, and A◦ is smooth, it follows that Bun◦n,v is smooth. �

Remark 8.6.10. Conceptually, the objectM in the proof has the following meaning: We expect there to
be a variant of Proposition 6.1.8 saying that there is a Leray exact sequence (cf [Heu23, Theorem 2.4])

(8.6.11) 1→ R1fÉt ∗B
× → R1fv∗B× → fv∗(Lie J ⊗ Ω̃X)→ 0.

By a comparison of Leray sequences, this would receive a natural morphism from the short exact sequence

(8.6.12) 1→ R1fÉt ∗(B
×[p∞])→ R1fv∗B̂× → R1fv∗ Lie J → 0.

Over A◦, the first term of (8.6.11) is equal to P, whereas the first term of (8.6.12) is P[p∞]. HenceM
sits in between these two sequences, and we can think of it as a replacement for R1fv∗B× that is technically
easier to work with. This also explains the relation to twists by invertible B-modules as used in [Heu23].

9. The stack of representations of πét
1 (X,x)

9.1. Pro-finite-étale vector bundles on curves. Throughout this section, let G be a linear algebraic
group over K and let X be a connected smooth projective curve over K of genus g, considered as an adic
space. We fix a base-point x ∈ X(K), then we have the étale fundamental group πét

1 (X,x), a profinite group.
Since X and x will be fixed, we simply denote πét

1 (X,x) by π throughout the following subsections.

Definition 9.1.1 ([Heu22c, Definition 4.6]). The universal pro-finite-étale cover of X is the diamond

X̃ = lim←−
X′→X

X ′

where the index category is given by the connected finite étale covers X ′ → X together with a lift x′ ∈ X(K)
of x. Then the projection q : X̃ → X is a pro-étale π-torsor. We recall two key technical properties:

Proposition 9.1.2 ([BGH+22, Corollary 5.6], [Heu22b, Proposition 3.9]). Assume that g ≥ 1.
(1) X̃ is represented by a quasi-compact perfectoid space.
(2) For any affinoid perfectoid space S and any ε > 0, we have

H0(X̃ × S,O) = O(S), H1
v(X̃ × S,O+/pε) a= 0.

(3) For any linear algebraic group G, we have H0(X̃ × S,G) = H0(S,G).

Proof. In [Heu22b, Proposition 3.9], it is shown that Hi
v(X̃ × S,O+/pk) a=Hi

v(S,O+/pk) for any k ∈ N and
i = 0, 1. The statement for general ε follows by considering for any k ∈ N the long exact sequence of

0→ O+/pε → O+/pk → O+/pk−ε → 0.

Since X̃ × S → S admits a splitting, it is clear that Hi
v(S,O+/pε)→ Hi

v(X̃ × S,O+/pε) is injective. This is
enough to show the statement for i = 0. For i = 1, the statement now follows from the 5-Lemma.

To deduce (3), we note that (2) implies the case of G = Mn(O), which implies the case of G = GLn(O).
This implies the general case by choosing a faithful representation of G. �

The relevance of the pro-finite-étale cover in this context stems from the following construction from
[Heu22c]: Let G be a linear algebraic group over K. Let S be an affinoid perfectoid space over K and let

ρ : π → G(S)
be a continuous homomorphism. Then we can regard ρ as a 1-cocycle in v-sheaves ρ : π × S → G (see
[HWZ23, §2.3] for a detailed discussion of this fact, and the natural topology on G(S)). After base-changing
to GS = G×S, we can regard ρ as a homomorphism of relative adic group over S. We can therefore associate
to ρ a G-torsor Vρ on (X × S)v, defined as the pushout of q : X̃ × S → X × S along ρ:

Vρ := (X̃ × S)×π GS .
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For any two representations ρ1,2 : π×S → G, we define the set of morphisms ρ1 → ρ2 as the set of g ∈ G(S)
such that ρ1 = g−1ρ2g. We will see below that this defines a fully faithful functor{ continuous representations

π → G(S)
}
↪→
{
G-torsors on (X × S)v

}
, ρ 7→ Vρ.

Next, we wish to pass to moduli stacks. But for varying S, the left hand side does not yet satisfy v-descent.
To rectify this, we need to slightly generalise the construction: Let E be any G-torsor on Sv. By [Heu22a,
Theorem 1.1], this is already étale-locally trivial. Thus AutG(E)→ S is a smooth relative group over S.

Definition 9.1.3. By a representation of π on E, we mean a homomorphism of sheaves on Sv
ρ : π → AutG(E).

A morphism between two such representations is a morphism of G-torsors compatible with π-actions. By
the same construction as above, we can associate to ρ a v-topological G-torsor Vρ := (X̃×S)×πE on X×S.

Definition 9.1.4. We denote by RepG(π) the prestack on PerfK,v defined by sending S to the groupoid of
pairs (E, ρ) consisting of a G-torsors E on Sv and a representation of π on E.

Definition 9.1.5. (1) Let S ∈ PerfK . Let q : X̃ × S → X × S and prS : X̃ × S → S be the projection
maps. We call a G-torsor V on (X × S)v pro-finite-étale if q∗V ' pr∗S E for some G-torsor E on Sv.

(2) Let Bunprofét
G,v ⊆ BunG,v be the sub-pre-stack on PerfK of pro-finite-étale G-torsors.

Lemma 9.1.6. Bunprofét
G,v is a v-stack. Indeed, for any v-G-torsor W on X̃×S, the following are equivalent:

(1) W = pr∗S E for some G-torsor E on Sv,
(2) the v-sheaf prS,∗W on Sv is a G-torsor.

In this case, the adjunction maps pr∗S prS,∗W →W and E → prS,∗ pr∗S E are isomorphisms.

Proof. Assume that W = pr∗S E. To see (2), it suffices to see that the adjunction map E → prS,∗ pr∗S E =
prS,∗W is an isomorphism. As we can check this locally on Sv, we can reduce to the case E = G. Then the
statement follows from Proposition 9.1.2, which says that G = prS,∗ pr∗S G.

Conversely, assume that prS,∗W is a G-torsor. As the adjunction map pr∗S prS,∗W → W is clearly
G-equivariant, it is then a morphism of G-torsors, hence an isomorphism. Setting E := prS,∗W gives (1).

Finally, the v-stack property follows from the equivalence because (2) can be checked locally on Sv. �

We now have the following generalisation of [Heu22c, Theorem 5.2]:

Proposition 9.1.7. For S ∈ PerfK , the construction of Definition 9.1.3 defines an equivalence of groupoids:{ representations
π → AutG(E)

on G-torsors E on Sv

}
∼−→

{
pro-finite-étale

G-torsors on (X × S)v

}
,

(E, ρ : π → AutG(E)) 7→Vρ := (X̃ × S)×π E
prS,∗ q∗V ← [V

In particular, this defines a natural equivalence of v-stacks

RepG(π) ∼−→ Bunprofét
G,v .

Proof. It is clear from the construction that q∗Vρ = pr∗S E, so Vρ is indeed pro-finite-étale.
In order to construct the inverse functor, let V be a pro-finite-étale G-torsor on (X × S)v. Then by

Lemma 9.1.6, the v-sheaf E := prS,∗ q∗V on Sv is a G-torsor. Since prS is π-equivariant, the natural π-
action on q∗V thus induces a π-action on E. This defines an object in the left hand side. Using the last
sentence of Lemma 9.1.6, one easily checks that these constructions are quasi-inverse to each other. �

Remark 9.1.8. Proposition 9.1.7 is no longer true in general when G is allowed to be a more general
algebraic or rigid group: See [HWZ23, §5.6] for a counterexample when G is an abelian variety.
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9.2. The pro-finite-étale locus of BunG,v. The goal of this subsection is to prove:

Theorem 9.2.1. The sub-v-stack Bunprofét
G,v ⊆ BunG,v is open. In particular, Proposition 9.1.7 induces a

natural open immersion of v-stacks
RepG(π) ↪→ BunG,v.

Remark 9.2.2. Let RepG(π) be the v-sheaf that sends S ∈ PerfK to the set of conjugacy classes of
continuous representations ρ : π → G(S). This is the quotient by conjugation of the representation variety
H om(π,G) of [Heu22d, §8.6]. Theorem 9.2.1 induces an open immersion of v-sheaves RepG(π) ↪→ BunG,v.
Together with Theorem 8.6.2, this implies that the fibre of RepG(π)→ A over A◦ ⊆ A is represented by a
smooth rigid space. This gives a (regular) p-adic analogue of the character variety from complex geometry.

Proof of Theorem 9.2.1. For the proof, we use the following series of lemmas.

Lemma 9.2.3. There is a rigid open subgroup U ⊆ G such that for any affinoid perfectoid space S, we have
H1
v(X̃ × S,U) = 1.

Proof. By [Heu22a, Corollary 3.8], we may replace G by an open subgroup to assume that G has good
reduction. From Proposition 9.1.2.(2), we deduce by tensoring with m that H1

v(X̃×S,mO+/pεm) = 0. As X̃
is perfectoid by Proposition 9.1.2.(1), we may thus apply [Heu22a, Lemma 4.27], which gives the result. �

Lemma 9.2.4. Let S ∈ PerfK and let V be a G-torsor on (X×S)v. If η : Spa(C,C+)→ S is any geometric
point of S such that the pullback of V to X × η is pro-finite-étale, then there is an open subspace W ⊆ S
containing Im(η) such that the restriction of V to X ×W is still pro-finite-étale.

Proof. Let U ⊆ G be as in Lemma 9.2.3. As any v-G-torsor on Spa(C,C+) is trivial by [Heu22a, Theo-
rem 1.1], the condition on means that V becomes trivial on X̃ × Spa(C,C+). In particular, it admits a
reduction of structure group to U on X̃×Spa(C,C+). We now invoke [Heu22a, Corollary 4.12]: This asserts
that there is an étale map S′ → S whose image contains Im(η) such that V admits a reduction of structure
group to U on X̃ × S′. By Lemma 9.2.3, this means that V becomes trivial on X̃ × S′. Let now W ⊆ S be
the image of S′ → S. This is open since it is the image of an étale map, and it contains η by construction.
Then S′ →W is an étale cover. Hence by Lemma 9.1.6, V is pro-finite-étale already over X ×W . �

At this point, we have proved the following “fibrewise criterion for pro-finite-étale bundles”:

Proposition 9.2.5. Let S be a perfectoid space. Let V be a G-torsor on X × S. Suppose that for every
geometric point η : Spa(C,C+)→ S, the pullback of V to X×η is pro-finite-étale. Then V is pro-finite-étale.

Proof. By Lemma 9.2.4, we can find an open cover U = (Si → S)i∈I such that the restriction of V to X×Si is
pro-finite-étale for each i ∈ I. By the first sentence of Lemma 9.1.6, this implies that V is pro-finite-étale. �

We can now complete the proof of Theorem 9.2.1: Recall that BunG,v is a small v-stack, so it has an
associated topological space |BunG,v|, see [Sch22, Definition 12.8.]. This is given by the equivalence classes of
maps Spa(C,C+)→ BunG,v where (C,C+) is any affinoid field overK. It now follows from Proposition 9.2.5
that Bunprofét

G,v is the sub-v-stack associated to the subspace U ⊆ |BunG,v| of points represented by maps
Spa(C,C+)→ BunG,v for which the corresponding v-G-torsor on X × Spa(C,C+) is pro-finite-étale.

To see that U is open, it now suffices to see that for any map Y → BunG,v from an affinoid perfectoid
space, the preimage of U under the composition |Y | → |BunG,v| is open. This is precisely Lemma 9.2.4. �

9.3. Relation to semi-stability and degree. Of particular interest to non-abelian p-adic Hodge theory is
the question raised by Faltings which Higgs bundles correspond to continuous representations of π under the
p-adic Simpson correspondence (1.0.1). More geometrically, for n ∈ N, one can ask which locus of H igGLn
corresponds to RepGLn(π) ↪→ BunGLn,v under the twisted isomorphism Theorem 6.2.5. But we can now
reduce this question to the case of C-points by Proposition 9.2.5: Indeed, it follows from this that the correct
condition on Higgs bundles needs to satisfy the analogous “fibrewise criterion” as in Proposition 9.2.5.
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Using the results of this article, the above question can thus be formulated in a more precise way by
asking which Higgs bundles are associated to pro-finite-étale v-vector bundles in the following sense:

Definition 9.3.1. Let (E, θ) be a Higgs bundle on X and let V be a v-vector bundle on X, both of rank n.
We say that (E, θ) and V are associated if h(E, θ) = b = h̃(V ) and there is a Ĵb-bundle L ∈H (b) such that

S (L, (E, θ)) ' V,
where S is the p-adic Simpson correspondence of Theorem 6.2.5 for G = GLn.

Our last goal is to prove the following, which proves and generalises an assertion by Faltings [Fal05, §5]:

Proposition 9.3.2. Let (E, θ) be a Higgs bundle on X that is associated to a pro-finite-étale v-vector bundle.
Then (E, θ) is semi-stable of degree 0.

Proof. We first show that degE = 0. For this we use that by [Heu21, Theorem 1.3], the v-Picard functor
BunGm,v = PicX,v is a rigid group whose group of connected components can be canonically identified with

π0(PicX,v) = π0(PicX,ét) = Z.

Definition 9.3.3. The degree of a v-line bundle on X is the connected component ∈ π0(PicX,v) = Z of the
associated K-point of PicX,v. The degree of a v-vector bundle V on X is deg V = deg(detV ).

Lemma 9.3.4. Let V be a pro-finite-étale v-vector bundle on X. Then deg V = 0.

Proof. Since the formation of det commutes with pullback, detV is itself a pro-finite-étale line bundle. Hence
we may assume that G = Gm. In this case, any pro-finite-étale v-line bundle L on X is topologically torsion
by [Heu22b, Theorem 3.6]: This means that Ln! → 0 in PicX,v(K) for n→∞. It follows that its image in
the discrete group π0(PicX,v) is torsion. Since π0(PicX,v) ' Z, this means that deg(L) = 0. �

Lemma 9.3.5. Let (E, θ) be a Higgs bundle associated to a v-vector bundle V . Then deg(E) = deg(V ).

Proof. By functoriality of S applied to det (Proposition 6.3.6 and Remark 6.3.4), det(E, θ) is associated
to detV . Hence we may assume G = Gm. Then by Lemma 6.5.1, there is a v-line bundle L on X with a
reduction of structure group to Ĝm such that V = E ⊗ L. As deg is additive, it therefore suffices to prove
that degL = 0. But L is pro-finite-étale by [Heu22b, Theorem 3.6], so this follows from Lemma 9.3.4. �

Together, Lemma 9.3.4 and Lemma 9.3.5 combine to show that (E, θ) in Proposition 9.3.2 has degree 0.
To see the semi-stability, we first need to understand what S does to sub-Higgs bundles:

Lemma 9.3.6. Let (E, θ) be a Higgs bundle associated to a v-vector bundle V . Assume that (N, θ|N ) ⊆ (E, θ)
is a sub-Higgs bundle. Then there is a sub-v-vector bundle W ⊆ V that is associated to (N, θ|N ).

Proof. With notation as in §6.5, that (E, θ) is associated to V means that there is an invertible B-module L
on Xv such that V = ν∗E⊗B L where the B-action on ν∗E comes from the homomorphism of OXv -algebras
θ : B → End(ν∗E) obtained from applying ν∗ to (5.5.2). That θ preservesN means that any endomorphism in
the image sends N into N . It thus induces by restriction a homomorphism B → End(ν∗N). By functoriality,
this factors through the sheaf BN obtained by applying the constructions of §6.5 to (N, θ|N ). Hence

ν∗N ⊗BN (BN ⊗B L) = ν∗N ⊗B L ⊆ ν∗E ⊗B L.
By Lemma 6.5.1, this means that S (BN ⊗B L, (N, θ|N )) ⊆ S (L, (E, θ)) = V is associated to (N, θ|N ). �

With these preparations, our argument to show semi-stability in Proposition 9.3.2 is now a generalisation
of that of Würthen, who previously considered the case of vanishing Higgs field θ [Wü22, Proposition 4.16] in
the context of the functor of parallel transport of Deninger–Werner [DW05]. WhenK = Cp, Proposition 9.3.2
can be also shown by extending Deninger–Werner’s construction to a larger class of Higgs bundles [Xu22,
Proposition 5.3.1], namely those that have vanishing Higgs field after “twisted pullback” in Faltings’ sense.

Lemma 9.3.7. Assume g ≥ 1. Let L be a v-line bundle on X with deg(L) > g−1, then dim H0(X̃, L) =∞.
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Proof. By [Heu22c, Theorems 1.3 and 5.7], there is an analytic line bundle L′ on X of degree = degL such
that the pullbacks of L and L′ to X̃ are isomorphic. We may therefore assume without loss of generality
that L is an analytic (hence, algebraic) line bundle. Let f : X ′ → X be any connected finite étale cover of
degree n, then f∗L has degree n degL. By Riemann–Hurwitz, g(X ′)−1 = n(g(X)−1). By Riemann–Roch,

dimK H0(X ′, L) ≥ deg(f∗L) + 1− g(X ′) = n(degL− g + 1) ≥ n.

On the other hand, since X̃ → X ′ is a v-cover, we have H0(X ′, L) ⊆ H0(X̃, L). As the degree of connected
finite étale covers of X is unbounded, this combines to show that dimK H0(X̃, L) =∞. �

Lemma 9.3.8. Let V be a pro-finite-étale v-vector bundle on X. Let W ⊆ V be any sub-v-vector bundle.
Then deg(W ) ≤ 0.

Proof. If X = P1, then πét
1 (P1) = 1, so Proposition 9.1.7 implies that V is a trivial vector bundle. By

Theorem 4.2.1, it follows that W is étale. As trivial bundles are semi-stable, this settles the case of P1.
Hence we may assume g ≥ 1. We can then make further reductions as in [NS65, Proposition 10.4]: Let

d = rankW , then ∧dV is still pro-finite-étale. We may therefore replace W ⊆ V by ∧dW ⊆ ∧dV to assume
that W is a line bundle. Second, suppose that degW > 0. As V ⊗n is pro-finite-étale for any n ∈ N, we can
then further replace W ⊆ V by W⊗n ⊆ V ⊗n to assume that degW > g − 1. Consider now the inclusion

H0(X̃,W ) ⊆ H0(X̃, V ).

Since V is pro-finite-étale, the right hand side is a finite dimensional K-vector space by Proposition 9.1.2.(2).
But by Lemma 9.3.7, the left hand side is infinite dimensional, a contradiction. �

To finish the proof of Proposition 9.3.2, assume that there is a sub-Higgs-bundle (N, θ|N ) ⊆ (E, θ) of
degree > 0. Then by Lemma 9.3.6, this is associated to a sub-v-vector bundle W ⊆ V . By Lemma 9.3.5, we
have deg(W ) = deg(N) > 0. By Lemma 9.3.8, this contradicts the assumption that V is pro-finite-étale. �
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