MODULI SPACES IN p-ADIC NON-ABELIAN HODGE THEORY

BEN HEUER

ABSTRACT. We propose a new moduli-theoretic approach to the p-adic Simpson corre-
spondence for any smooth proper rigid space over C,, with coefficients in any rigid analytic
group G. For its formulation, we introduce the class of “smoothoid spaces” which are
perfectoid families of smooth rigid spaces. We then prove a generalisation of Faltings’
local p-adic Simpson correspondence to v-topological G-bundles on smoothoid spaces. We
use this to show that there are small moduli v-stacks for both sides of the correspondence.
Second, we use it to construct an analogue of the Hitchin morphism on either side. This
allows us to give a conjectural reformulation of the p-adic Simpson correspondence in a
more geometric and canonical way: The moduli stack of v-topological G-bundles is a twist
of the moduli stack of G-Higgs bundles over the Hitchin base.

1. INTRODUCTION

Let K be a complete algebraically closed extension of Q,. The conjectural p-adic Corlette—
Simpson correspondence for a connected smooth proper rigid space X over K aims to relate
K-linear continuous representations of the étale fundamental group m$*(X) of X to a full
subcategory of the Higgs bundles on X. By a reinterpretation of Faltings’ pioneering work
on generalised representations [Fal05] in terms of Scholze’s diamonds [Sch22], this should go
through a p-adic non-abelian Hodge correspondence, namely an equivalence of categories

(1) {vector bundles on X,} — {Higgs bundles on X},

via a natural fully faithful embedding of representations of 7$*(X) into vector bundles on X, .
The aim of this article is to lay the foundations for a new conceptual approach to p-adic non-
abelian Hodge theory, in particular to (1), which puts moduli spaces at its centre: Indeed, in
[Heu23], we will construct the equivalence (1) based on ideas of this article. Second, we suggest
a new conjectural geometric formulation of the equivalence (1) in terms of a comparison of
moduli stacks, which will be proved in [HX24] in the case when X is a curve. Third, this makes
it possible to explain the relation to representations of 7$*(X) in terms of a p-adic character
variety, which opens up new geometric ways to study the essential image of representations of
7§ (X) under (1), generalising the approach for line bundles from [Heu]. Fourth, we develop
these foundations not just for GL,,, but for general rigid groups G: This opens up a new line
of investigation into generalisations of (1) to G-torsors, which we continue in [HWZ23].
Besides, the technical foundations of p-adic Hodge theory of perfectoid families of rigid
spaces that we provide in this article are of broader interest to relative p-adic Hodge theory:
For example, in [Heu24], we use them to construct the relative Hodge—Tate spectral sequence.

1.1. The sheafified non-abelian Hodge correspondence. In the spirit of Simpson’s non-
abelian Hodge theory [Sim92], the starting point of this article is the idea to realise the p-adic
non-abelian Hodge correspondence (1) by finding a non-abelian generalisation of Scholze’s
approach to the Hodge—Tate spectral sequence:

To explain this, let us begin by considering the p-adic Hodge—Tate short exact sequence

(2) 0— HL (X,0) — Homey(n$(X), K) — H(X, Q% (1)) — 0.
1
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The fundamental idea of Scholze’s construction of (2) is to realise it as a Leray sequence for
the morphism of sites v : X, — X, where X, is the v-site of the diamond associated to X.
The key result that leads to (2) is then the natural isomorphism [Sch13b, Proposition 3.23]

(3) HT : R'v,0 =5 Q% (—1).

In this article, we give an analogue of (2) in which the middle term is replaced by continuous
representations 7$'(X) — GL,,(K), following Scholze’s strategy with O replaced by GL,(O).

In a generalisation that so far has not been studied in the p-adic setting, we more generally
pass from GL,, to any rigid analytic group variety G over K. Such G are the p-adic analogues
of complex Lie groups, and we simply refer to them as “rigid groups”. For example, G
could be the analytification of an algebraic group, or any open subgroup thereof. In order to
describe the correct replacement for the right hand side of (3), we need the following:

Definition 1.1. A G-Higgs bundle on X is a pair (E, ) of a G-torsor E on X and a section
0 € H*(X,ad(E) ® Q% (—1)) such that 8 A = 0, where ad(E) is the adjoint bundle.

Towards a non-abelian analogue of Scholze’s construction, our first main result is now the
following “sheafified p-adic non-abelian Hodge correspondence” for rigid analytic spaces:

Theorem 1.2. Let X be any smooth rigid space over K and let v : X, — X¢ be the natural
morphism of sites. Let G be a rigid group over K, considered as a sheaf on X,. For example,
G could be the analytification of any algebraic group. Then there is a canonical isomorphism

HTlog : R'v.G = Higgs,
of sheaves of pointed sets on Xg that is functorial in X, G and K. Here
Higgse = (Lie(G) @k Q% (-1)"=°/G

is the sheaf of isomorphism classes of G-Higgs bundles on Xg: FExplicitly, Lie(G) is the
Lie algebra of G as a K-vector space, (—)"=0 denotes the subspace of elements 0 satisfying
O N6 =0, and the sheaf quotient is formed with respect to the adjoint action of G on Lie(G).

This is a vast generalisation of Scholze’s isomorphism (3), which we recover as the special
case of G = G,. In earlier work, we had studied G = G,,, but already for G = GL,,, the
theorem is new. In other words, HTlog gives a canonical correspondence between isomorphism
classes of v-topological G-bundles on X and G-Higgs bundles on X after étale sheafification.

As in Scholze’s strategy for G, the Leray sequence of v now yields a short exact sequence

(4) 0= H}(X,G) — H} (X, G) =% Higgsq(X)

of pointed sets. Of course, for non-abelian G, such a sequence gives less structure than a short
exact sequence of abelian groups as in (2). The second main idea of this article is therefore
to pass from sheaves of isomorphism classes to moduli spaces, and to turn the last morphism
in (4) into a morphism of v-stacks. The exactness of the Hodge-Tate sequence can then find
its generalisation in geometric properties of this morphism, such as being a fibration. As we
will illustrate below at the hand of examples, this strategy indeed turns out to be fruitful.

1.2. Moduli spaces in p-adic non-abelian Hodge theory. In order to define p-adic
analytic moduli spaces of v-topological G-torsors and G-Higgs bundles on X, we need new
technical foundations to formulate relative p-adic Hodge theory. For this, our first step in
this article is to introduce and study a new class of perfectoid families of smooth rigid spaces:

Definition 1.3. A smoothoid space is an analytic adic space over a perfectoid field K that
locally admits a smooth morphism of adic spaces to a perfectoid space over K.
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An example would be the product X x T of the smooth rigid space X with a perfectoid
space T, or any object of its étale site. There is a reasonable notion of differentials on a
smoothoid space: For any smoothoid space Y we consider the map v : Y, — Yz and define

62?/ = R™"v,Oy.
We show that this is a vector bundle on Y. The cup product induces a natural wedge product
on this, yielding a good functorial definition of G-Higgs bundles, exactly as in Definition 1.1.

Towards a moduli-theoretic non-abelian Hodge correspondence, we suggest to study the
functors fibred in groupoids on the v-site Perfx of affinoid perfectoid spaces T over K

PBung . T —{G-torsors on (X x T),},
Higgse: T —{G-Higgs bundles on (X x T)¢ }-
Our next result says that these can reasonably be regarded as geometric objects:
Theorem 1.4. Bung,, and Higgss are small v-stacks in the sense of Scholze [Sch22, §12].

While for Bung,,, only the smallness requires work, the result for J#%ggs, is much deeper.
We deduce it from v-descent criteria, namely our main result is that Theorem 1.2 generalises:

Theorem 1.5. Let X be a smoothoid space over K, then there is a canonical isomorphism
HTlog : R'v,G =5 (Lie(G) @k Q%)"=0/G

of sheaves of pointed sets on X, where v : X, — Xgi. It is functorial in X, G and K. For
commutative G, there is for any n € N a canonical isomorphism R"v,G = Lie(G) @ QO'%.

1.3. The Hitchin morphism on the Betti side. The moduli stack ¢%ggs, gives rise to
a p-adic incarnation of the Hitchin morphism which plays an important role in complex
non-abelian Hodge theory. In the p-adic setting, this is a morphism of v-stacks

(5) H : Higgsq — Ac
to the Hitchin base Ag over X. Here Ag is in general a v-sheaf, but if X is proper and G is

split reductive or commutative, then Ag is represented by an affine rigid space, for example

HO(X, Symk QX) Rk G,.
1

Acr, =
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The construction of H in this case is essentially the same as the classical one due to Hitchin
[Hit87], given by sending a Higgs bundle (E, 6) to the characteristic polynomial of 6.

On the “Betti” side, Theorem 1.4 now allows us to construct an analogous morphism:
Definition 1.6. For any rigid group G, the Hitchin morphism on the Betti side
(6) H : Bung ., = Ac
is defined by sending a wv-topological G-torsor on Y = X X T to the associated class in
R'v,G(Y) and using HTlog to pass to the Higgs side, where we use the Hitchin map (5).

Assume now that X is a smooth proper rigid space over K and that G is reductive. In this
setting, we envision the p-adic Simpson correspondence to have a geometric incarnation in
terms of a comparison of the Hitchin morphisms (5) and (6). While Bung , and #iggs; are
not in general isomorphic, we conjecture that one is a twist of the other in a canonical way,
via the Hitchin fibrations. Indeed, building on this article, the following is proved in [HX24]:

Theorem 1.7 ([HX24]). Let X be a smooth projective curve over K and let G be a reductive
group. Then there is a Picard groupoid & on A, that acts on both H : #iggsq; — A and

H: Bung,, = A, and a P-torsor S for which there is a canonical equivalence of v-stacks

Bung., — H x? 1995
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Here & is the stack of line bundles on the spectral curve. In particular, this shows that
for G = GL,,, up to connected components, the morphism H - PBung , — Ag is in this case a
fibration in abelian varieties. To illustrate this phenomenon further, let us also mention the
easier case of G = G,,,, for which [Heu2la, Theorem 1.3] immediately implies the following:

Theorem 1.8 ([Heu2la]). For any smooth proper rigid space X over K, the sequence

(7) 0 — Bung,, & — Bung,, » i>H0(X7§~2§()(§§(G:a —0
18 short exact. In particular, both H and H are torsors under RBung,,, ¢t -

1.4. Towards a p-adic Corlette-Simpson correspondence for 7$'(X). The moduli-
theoretic approach also seems fruitful for studying representations of 7¢*(X): We show that
the Hitchin morphism on the Betti side H induces a geometric generalisation of the map
HT : Homegs(m1(X), K) — H°(X, ) in the Hodge Tate sequence (2), namely a morphism

H : Aom(r(X),G) — Ag,

from the representation variety parametrising continuous G-representations of 7$*(X) to the
Hitchin base. In contrast to ﬁ, this has the advantage that it is represented by a morphism
of rigid spaces. We call this the “Hitchin—-Hodge—Tate morphism”. The name reflects
that H is simultaneously an analogue of the Hitchin morphism and a generalisation of the
Hodge—Tate map HT. Indeed, for G = G,, it is the morphism of rigid spaces associated to HT
by tensoring with G,. As we will explain, the image of a representation 7¢*(X) — GL,, (K)
under H is a close analogue of the Hodge-Tate—Sen weights of a local Galois representation.

That H is rigid analytic is relevant as the exactness of (2) can now find its non-abelian
generalisation in geometric properties of H: For G = G,,,, [Heu, Theorem 4.1] shows that (7)
induces on coarse moduli spaces a short exact sequence of rigid groups

(8) 0 = Pictt o — Hom(r{'(X),Gn) 2 HO(X, Q%) © G, — 0,

where Picg§7ét is the topological torsion Picard functor, so here H is indeed a fibration. For
G = Gy, this was our crucial input to answer in [Heu, Theorem 1.1] the question which Higgs
bundles correspond to continuous characters of 7{*(X) — G,,(K) under the equivalence (1).
We envision that the geometric study of H leads to an answer of this question for general G.

In summary, with the construction of the moduli stacks Bung, and #%iggs; and their
Hitchin morphisms H and 7—~l, we have thus established the technical foundations for our
moduli theoretic approach to p-adic non-abelian Hodge theory.

1.5. Application: G-torsors on rigid spaces in the v-topology. Theorem 1.2 is of
independent interest beyond (1): The sequence (4) describes how far the fully faithful functor

{G-torsors on X¢} — {G-torsors on X, }

is from being an equivalence, in terms of the explicit set Higgs(X). This is already very
interesting for G = GL,,, where it describes the difference between étale and v-vector bundles
on X, which had so far been insufficiently understood: The question when a v-vector bundle is
already étale appears naturally for example in the context of automorphic sheaves defined via
descent from perfectoid Shimura varieties [CHJ17]. Using (4), we can now give satisfactory
answers to this question. For example, we deduce the following a priori surprising criterion:

Corollary 1.9. Let X be a smooth rigid space and V' a G-torsor on X,,. Then for any étale
map f: U — X with Zariski-dense image, V is étale-locally trivial if and only if f*V is.
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This extends the case G = G,, from [Heu22b] which we had used to simplify the proof
that the automorphic sheaves of [CHJ17] are analytic vector bundles. Theorem 1.2 now
improves this application: Setting G := O1*, we see that the natural integral structure on
the automorphic sheaves descend as well, i.e. these are finite locally free OF-modules.

For applications to G-torsors on X,, also the following more categorical result is useful:

Theorem 1.10. Any étale morphism f: X — T¢ induces an equivalence of categories
{small G-torsors on X,} — {small G-Higgs bundles on X}
that is natural in G and f, but in general depends on the choice of f.

As we explain in §6.3, this is a generalisation of a rigid analytic version of Faltings’ “local
p-adic Simpson correspondence” [Fal05, Theorem 3]. Other instances of such a correspon-
dence have previously been given by Abbes—Gros [AGT16], Tsuji [Tsul8], Wang [Wan23] and
Morrow—Tsuji [MT21], all in the case of G = GL,,. Here we call a G-torsor small if it has
a reduction of structure group to a certain open subgroup of G depending on X. As every
G-torsor on X, becomes small étale-locally on X, Theorem 1.10 always applies locally on
Xe. Hence p-adic non-abelian Hodge theory is a good framework to study G-torsors on X,,.

1.6. Relation to Faltings’ global p-adic Simpson correspondence. We now elaborate
on the discussion surrounding (1), and explain how our work fits into the historic context: The
original goal of p-adic non-abelian Hodge theory is to study the K-linear representations in G
of the étale fundamental group 7$*(X) of a smooth proper rigid variety X with the methods
of p-adic Hodge theory. As this has so far almost exclusively been done for G = GL,,, we
restrict to this case for the moment. Following Faltings [Fal05], the basic idea is to embed
representations into a category of “generalised representations”, which can be interpreted as
vector bundles on X, ([Heu22a, §2]). Namely, there is a fully faithful functor

{ﬁn.—dim. continuous K-linear

representations of 7$(X) } - {vector bundles on XU}’

defined by regarding a representation as a descent datum for the trivial bundle along the
pro-finite-étale universal cover X — X, which is a v-topological 7$*(X)-torsor over X.
Based on Faltings’ influential work in the case of curves, we have the following:

Theorem 1.11 (p-adic Simpson correspondence). Assume that K is algebraically closed and
X is a smooth proper rigid space over K. Then there is an equivalence of categories

{vector bundles on X,} — {Higgs bundles on X }.
It is non-canonical and depends on choices of a BJR/EQ—liﬁ of X and an exponential on K.

We prove this in [Heu23] based on the preparations in this article, a crucial role being played
by the Hitchin fibration on the Betti side H. The conjecture was previously known for curves
[Fal05] and line bundles [Heu22b], and there were many partial results e.g. in good reduction
settings [Wan23] and arithmetic situations over discretely valued fields [LZ17][MW22].

On the other hand, moduli spaces can be used to strengthen this statement: As a first
example, by testing on perfectoid spaces associated to profinite sets, we can endow the sets of
isomorphism classes |ZBunar, »(K)| and [#%iggsay,, (K)| on either side with a natural topol-
ogy. One can then hope to refine Theorem 1.11 in a topological way that is very close to the
complex Corlette—Simpson correspondence:

Conjecture 1.12. The equivalence of Theorem 1.11 induces a homeomorphism

|Bung, »(K)| = [Higgsay, (K)|.
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When X is a curve, this conjecture is proved in [HX24, Theorem 1.1.1]: Indeed, the choices
in Theorem 1.11 induce a trivialisation of the torsor & from Theorem 1.7 on K-points. Note
that Theorem 1.7 is completely canonical, so this gives a conceptual explanation of the choices
in Theorem 1.11 in a geometric fashion. We believe that this perspective should generalise.

1.7. Relation to other previous works, and outlook. There has recently been a great
deal of activity in p-adic non-abelian Hodge theory, and we now sketch how the results of
this article relate to some of these recent works, further to the relation to the local p-adic
Simpson correspondence discussed in detail in Section 6.3.

The first works in the area were due to Deninger—Werner [DWO05][DW20], who define a
functor from certain Higgs bundles on X with vanishing Higgs field to representations, thus
giving a p-adic analogue to the complex theory of Narasimhan—Seshadri [NS65]. This was
extended by Wiirthen to the rigid setting [Wii23]. From our perspective, this treats those
v-vector bundles that are trivial étale-locally, and thus go to 0 under the Hitchin fibration.
So this theory plays out in the fibre over 0 of H, the analogue of the “nilpotent cone”.

The same is true for the works of Liu-Zhu [LZ17] and Min-Wang [MW22], who study
Q,-local systems, respectively v-vector bundles, on a smooth rigid space X over a discretely
valued field k, and relate these to Higgs bundles over the base-change to the completed
algebraic closure K of k. In both of these cases, the associated Higgs bundles are nilpotent,
which from our perspective can be explained as follows: Functoriality in Theorem 1.5 implies
that HTlog is Galois-equivariant, and the same is true for the morphism H. Since the Galois
invariants of K (—1) are trivial, it follows that H sends the associated v-vector bundles to 0.

Regarding v-vector bundles in p-adic Hodge theory, let us also mention the relation to
Sen theory, which is concerned with v-vector bundles on rigid spaces over discretely valued
fields L: The classical theory of Sen [Sen81] essentially describes v-vector bundles on Spa(L).
Recently, Sen theory has been further developed for rigid spaces over L by Shimizu [Shil8, §3]
based on [LZ17], Min-Wang [MW22], Pan [Pan22, §3.2] and Rodriguez Camargo [RC22, §5].
The relation of our work to that of Rodriguez Camargo will be explained in [Heu23, §4.2].

The generalisation from vector bundles to G-torsors in p-adic non-abelian Hodge theory
has, to the best of our knowledge, so far only been explored by one previous work: In the
case of Higgs bundles on curves with Higgs field § = 0, Hackstein [Hac08] has generalised the
functor of Deninger—Werner to a functor on G-bundles for a reductive group G, in analogy to
the complex theory by Ramanathan [Ram75]. As one considers reductive G in the complex
theory, it is arguably a bit surprising that Theorems 1.5 and 1.10 allow any rigid group G.

Regarding moduli functors in p-adic non-abelian Hodge theory, the only case that has been
studied before is the case of G = G, mentioned above, which we have studied in [Heu2la] in
terms of the rigid analytic Picard variety, the coarse moduli space of the v-stack ZBung

m V"

As already mentioned, a major open question raised by Faltings is which Higgs bundles
correspond to representations of 7$*(X) under the p-adic Simpson correspondence. Cases
in which this is known include line bundles [Heu22b] and abeloid varieties [HMW23]. Very
recently, Xu [Xu22| has extended the construction of Deninger—Werner in the case of curves,
by constructing an equivalence between representations and “potentially Deninger—Werner
Higgs bundles” over C,. Little is known beyond these cases, and it currently seems difficult
to even formulate a conjecture in general. We have shown in [Heu2la] that for G = G,,,, the
answer is already quite subtle and best described in terms of moduli spaces. For general G,
this suggest studying the locus of pro-finite-étale bundles inside Hung,,,, which is started in
[HX24, §9]. This is another main motivation to study moduli spaces in this context.

Regarding Theorem 1.5, already the case of G = G, is new for smoothoid spaces and has
interesting applications: As we will explain in detail in [Heu24], it yields a relative version
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of the Hodge—Tate spectral sequence for smooth proper morphisms f : X — S of rigid
spaces. Related results have been obtained by Abbes—Gros [AG22], Caraiani—Scholze [CS17,
Corollary 2.2.4], He [He22, Theorem 12.2], and Gaisin—Koshikawa [GK22, Theorem 1.5].
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SETUP7 CONVENTIONS AND NOTATION

Let K be a perfectoid field over @,. One example that will appear is the field Q¢
obtained by adjoining to Q, all p-power roots of unity and completing p-adically. We fix a
ring of integral elements K+ C K, e.g. the ring of integers K™ = O. Let m C K be the
maximal ideal. For any o € R>, we write w®m for the subset of z € K with |z| < |w|*.

Throughout we work with analytic adic spaces over (K, K) in the sense of Huber [Hub94].
We take it as part of the definition that adic spaces are sheafy. In the very few cases where
we consider non-sheafy affinoids, we use the functor of points of Scholze—Weinstein [SW13,
Definition 2.1.5], and we call this a pre-adic space following [KL15, Definition 8.2.3].

By a rigid space we mean an adic space locally of topologically finite type over (K, KT), in
the sense of [Hub94, §3]. Since for a given K the ring K won’t change throughout, we often
suppress KT from notation, and simply speak of rigid and adic spaces over K. Associated
to any rigid space X over K we have the pro-étale site X,;0¢ in the sense of [Sch13a], which
is now sometimes called the “flattened” pro-étale site. For any adic space over K, we denote
by X the étale site of Kedlaya—Liu [KL15, Definition 8.2.16/19](cf [Sch12, Definition 7.1]):
In particular, this may in general contain non-sheafy pre-adic spaces, but we usually work in
the setting of sousperfectoid spaces [HK][SW20, §6.3] where all objects of X¢; are sheafy. We
call a morphism f : X — Y of adic spaces standard-étale if X and Y are affinoid and f is
a finite chain of compositions of finite étale morphisms and rational opens. It is immediate
from the definition of étale morphisms that standard-étale morphisms form a basis of Xg;.

We use perfectoid spaces in the sense of [Sch12] and write Perf i for the category of affinoid
perfectoid spaces over K, or equivalently of perfectoid (K, K™')-algebras. On this we have
the étale and v-topology in the sense of [Sch22, §7], and we denote the corresponding sites by
Perf i ¢ and Perfg ,. To any adic space X over K, Scholze associates a diamond X ¢ over K
[Sch22, §11,§15]: For our purposes, as we fix the perfectoid base field K, we can identify this
with a sheaf on Perfg ,. The functor —< is fully faithful on all subcategories of adic spaces
that we consider, and moreover identifies the étale sites [Sch22, Lemma 15.6]. We therefore
often drop the —¢ from notation and switch back and forth freely between X and X<. In
particular, we denote by Xypro¢t and X, the quasi-pro-étale and the v-site of X ¢ defined in
[Sch22, §14]. If X is perfectoid, we also use the site Xpo¢t from [Sch22, §8].

2. SMOOTHOID SPACES

In this section we introduce the class of smoothoid spaces and prove some basic properties.
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2.1. Definition of smoothoid spaces and toric charts. We start by fixing the notion of
smooth morphisms we work with, following Huber:

Definition 2.1 ([Hub96, Corollary 1.6.10]). A morphism of adic spaces X — S is smooth

if locally on source and target it admits a factorisation X LN x B? = S where B? is the
unit ball over K of some dimension d, and h is an étale morphism.

It is possible to further extend the definition using the pre-adic étale site, but we shall in
this section restrict attention to (sheafy) adic spaces. In particular, it is part of our definition
that S x g B? exists as an adic space. This always holds if S is sousperfectoid.

Definition 2.2. We say that an adic space over Spa(K, KT) is smoothoid if it admits
an open cover by subspaces U that admit a smooth morphism of adic spaces U — Y to a
perfectoid space Y over K. We call such a morphism a smooth chart. A morphism of
smoothoid spaces is simply a morphism of adic spaces between smoothoid spaces.

Definition 2.3. We denote by Smdg ¢ the category of smoothoid spaces over K endowed
with the étale topology. Note that any adic space étale over a smoothoid is again smoothoid.

For any d € N, let T¢ = Spa(K(Tlil, e ,TCEH)) be the d-dimensional affinoid torus over
(K,K™). Let
(9) T := Spa(K (TP ..., TPy - 19,
a pro-étale affinoid perfectoid cover. If QY¢ C K, this is Galois with group A := Zg(l) =
yLnn ugn (K), i.e. it is a pro-étale torsor under A regarded as a pro-finite adic group.

Definition 2.4. (1) For a smoothoid space X, a toric chart is a standard-étale map
f: X = T¢xY where Y is an affinoid perfectoid space. We call X toric if it admits a
toric chart. As standard-étale maps form a basis of the étale site, any smoothoid space
can be covered by toric open subspaces.

(2) Let f/: X’ — T% x Y’ be a toric chart for a second smoothoid space X’. Then by a
morphism of toric charts we mean a commutative diagram of morphisms of adic spaces

where ¢ is a product of a morphism Y’ — Y with a homomorphism T4 — T4 of rigid
groups. Then ¢ lifts canonically to a morphism of perfectoid spaces Tg; xY' — Td xY.

Lemma 2.5. Any toric smoothoid space X fits into a Cartesian diagram

X —Y

.

where [ is a smooth morphism of smooth rigid spaces and Y is an affinoid perfectoid space.

Proof. Let h : X — Y x T be a toric chart where Y is affinoid perfectoid. Let (Y;);es be the
inverse system of all smooth rigid spaces over (K, KT) with compatible morphisms from Y,
then by [Heu2la, Proposition 3.2], we have Y ~ yLnYi, and thus Y x T% ~ limY; x T%. As
h is standard-étale, hence quasi-compact quasi-separated, this implies by [Sch22, Proposition
11.23] that there is some i € I for which h descends to an étale map Z — Y; x T O

We now collect some technical properties saying that smoothoid spaces are well-behaved
as adic spaces. These are all immediate applications of known results about adic spaces:



MODULI SPACES IN p-ADIC NON-ABELIAN HODGE THEORY 9

Lemma 2.6. Let X be a smoothoid adic space over K.

(1) X is sousperfectoid. If X is affinoid, then the structure sheaf O is acyclic on Xg;.

(2) Diamondification defines an equivalence Xgi = X that identifies the structure sheaves,
where we see X< as a v-sheaf on Perf g with structure sheaf induced from that of Perf .

(8) For the natural map v : X9 — X¢, we have v,0% = O,

(4) Diamondification on smoothoid adic spaces defines a fully faithful functor

Smdg — {diamonds over Spd(K)}
(5) Any finite locally free O-module on Xg is already locally trivial in the analytic topology.

We may therefore freely switch between regarding X as a diamond or as an adic space.

Proof. Part 1 follows from [SW20, Prop. 6.3], see also [HK, Remark 10.6], or Lemma 2.16
below for an explicit argument. Acyclicity then holds for any analytic sheafy affinoid adic
space by [KL15, Theorem 2.4.23]. For 2, see [Sch22, Lemma 15.6]. The second part of the
statement follows from [Sch22, Lemma 11.31]. Part 3 follows from part 1 by [HK, Proposition
11.3]. Part 4 follows from part 2. For part 5, see [KL15, Theorem 8.2.22.(d)]. O

2.2. Differentials on smoothoid spaces via Hodge—Tate comparison. Our next goal
is to show that there is an intrinsic notion of “global” Kihler differentials QY on a smoothoid
adic space X: From the perspective of Hodge cohomology, it makes sense to postulate that
perfectoid spaces should have no differentials. This suggests that for a smooth morphism
X — Y over a perfectoid space Y, the global differentials of X should be given by the sheaf
of relative differentials QY,- defined by Huber [Hub96, (1.6.2)].

The issue with this definition is that it is not immediately obvious that it is independent of
the smooth chart of X, and hence that it glues. It is therefore better to have a more intrinsic
definition of 4. For this we build on the following result mentioned in the introduction,
which is crucial in Scholze’s perspective on the Hodge-Tate comparison isomorphism:

Proposition 2.7 ([Sch13b, Proposition 3.23][Heu22b, Proposition.2.25]). Let X be a smooth
rigid space over K and consider the natural map v : Xprost — Xe¢t. Then there is for any
n € N a natural isomorphism

R"v,0 = Q%{—n}.
Here {—n} denotes a Breuil-Kisin-Fargues twist, i.e. a Tate twist by Z,(—n) if Q¥ C K.
The isomorphism identifies the cup product on Rv,O with the wedge product on differentials.

Remark 2.8. (1) One can always make choices to identify Q% {—n} = Q% . But it is often
more natural to keep it, for example to keep track of Galois actions.
(2) Since H!(Y,O) = 0 for any affinoid perfectoid space Y, one can equivalently formulate
Proposition 2.7 in terms of any finer site over Xpro¢, in particular for X, — Xg;. This
is the perspective we use in the following as it can be adapted to smoothoid spaces.

The main goal of this subsection is to prove the following generalisation of Proposition 2.7:

Proposition 2.9. Let X be a smoothoid space. Let v : X, — X¢ be the natural map. Then

(1) R"v,O is a vector bundle on Xg.
(2) Suppose that there is a smooth morphism f: Z — S of rigid spaces (we do not require
Z and S to be smooth over K ) such that X fits into a Cartesian diagram

X —Y
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where Y is perfectoid. Then there is a canonical and functorial isomorphism
R"v, O = g*Q’ZL‘S{—n}.
Before we give a proof, we discuss some consequences. Firstly, we can use this to define:

Definition 2.10. Let X be a smoothoid space. For any n € N, we set ﬁ} = R™",0.

We also set Qx = ﬁﬁ( It follows from the local description in Proposition 2.9 that ﬁ}
enjoys all usual compatibilities of the K&ahler differentials. For example, the cup product
induces a natural isomorphism ATQ) x = 62?( that we can use to define a wedge product

(10) A Qy @ Q) — Q.

Definition 2.11. Let X be a smoothoid adic space. Then the number d := rkp, (NZX is
locally constant on X, and we refer to it as the smooth dimension dim X of X.

A second advantage of the definition via R'v,O is that by the usual cohomological com-
parison between the big and small étale sites, we immediately obtain:

Lemma 2.12. The functor Q" X HO(X, ﬁ}) is a sheaf on the big étale site Smdg ¢ of
smoothoid spaces over K. Explicitly, it is given by R™u.O{n} for p: Smdg , — Smdg g

Lemma 2.13 (cotangent sequence). Let f: X — Y be a morphism of smoothoid spaces that
18 of topologically finite presentation. Then there is a natural right-exact sequence of sheaves
on Xg B B

f*Qy - Qx — Qx|y{—n} — 0

where SNZX‘Y is Huber’s sheaf of relative Kdhler differentials [Hub96, (1.6.2)]. If f is smooth,
this is an exact sequence of vector bundles. If f is étale, the first map is an isomorphism.

Proof. The first map exists by adjunction via Lemma 2.12. To prove the lemma, we can work
locally and may thus assume by rigid approximation that f is the base-change of a morphism
fo : Xo — Y of smooth rigid spaces along a morphism Y — Y. For fj, the lemma is clear
from Proposition 2.7. By Proposition 2.9 we get the desired sequence via pullback. If f is
smooth we can as in the proof of Lemma 2.5 arrange for fy to be smooth. O

2.3. Computations with toric charts. For the proof of Proposition 2.9, we can work
locally and assume that we have a toric chart f : X — T¢ x Y for some affinoid perfectoid
space Y. We fix f for the rest of this subsection.

We start by adapting some technical results from [Sch13a, §4-5] to smoothoid spaces: The
chart f induces a perfectoid cover X, — X by pullback of X along the toric cover (9).
Throughout this subsection, we use the following notation for the associated Huber pairs:

o(-)
ALY
| | | l ] I
X — s T¢xy — ¢ (R,R") «— (B,B") +— (A,A").

If Q)¢ C K, then the vertical maps are A-torsors. For n € N, let T¢ be the torus in the

variables T{/”" ... T,/"", then T ~Jim _ T2 Let X, = Spa(Ry, R;) be the pullback of

X — T? to T¢, then Xo ~ yLan. As X is standard-étale over T x Y, it is perfectoid.
Finally, we fix any real number 1 > o > p%l. This will be required to kill some torsion.

The following is the analogue of [Sch13a, Lemmas 4.5 and 5.5] in our setting.

Lemma 2.14. (1) There is 8 € Rsq such that the map RY® 4+ AL — R is injective

with pP-torsion cokernel.
(2) Let € >0, then after replacing X by the cover X,, — X for n > 0, we can take 8 < e.
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(3) Assume that Q;Y° C K. Then for any s € N and i > 0, the kernel and cokernel of
Héts(Av R+/ps) - HétS(Aﬂ R;ro/ps)
are killed by p? where v := 2B+ «. The same is true for H:, (A, RT) — H:

cts

(A RYL).

Proof. We first treat the case X = T¢ x Y. Write ST = O*(Y) and consider the map
g : ST®g+ At — BT. Its domain can be described as S*(Tli,...,TCﬂ which is a ring
of definition of B = § <Tli7 . ,Tf}, S0 ¢ is an isomorphism after inverting p. It thus has
bounded p-torsion cokernel as B is uniform. On the other hand, after applying ® 4+ AL we
have maps

S+®K+A+®A+A;—o — B+®A+A; — B:_o < S+®K+A;
where the last almost isomorphism comes from [Sch12, Proposition 6.18]. The composition is
clearly an isomorphism. Since the map A™/p"™ — AL /p™ is flat for all n, the first map is still
injective with bounded p-torsion cokernel. Again by flatness, the middle term is p-torsionfree.
It follows that all of the above maps are almost isomorphisms, thus so is g.

We now add a standard-étale map X — T¢ x Y. For this, the argument from [Sch13a,
Lemma 4.5] goes through: Let Z be a smoothoid for which we already know the statement,
e.g. T? x Y, and consider a standard-étale map h : X — Z. Write Z = Spa(B, BT) and
X = Spa(R, R") with toric covers X, = Spa(Re, RY) and Z., = Spa(Bwo, BL).

Claim 2.15. The map Rt®@p+ BL, — R has bounded p-torsion cokernel, and is an isomor-
phism after inverting p.

Proof. If h is a rational localisation defined by some f1,..., f.,g € B, then a ring of definition
Ry = B*(%, e %) of (R,RT) is given by the p-adic completion of the sub-algebra of
B*[é] generated by %, e %. Similarly, B&(%, ey %) is a ring of definition of (Roo, RL).
Consider now T := Ry®p+BY and let TT be the integral closure of the image of T, in
T := TO[%}, then by construction Spa(T,T%) = X Xz Zs = Spa(Re, RL). It follows that
the natural map Ty — RZ, is an isomorphism after inverting p, and that both its image and
RZ are rings of definition of R., hence Ty — R, has bounded p-torsion cokernel. The claim
follows by considering the composition Ty — RT®pz+ BL — RZL since Ry C Rt has bounded
p-torsion cokernel, both being rings of definition of R.

If instead A is finite étale, then By, — R = R ®p B is finite étale, and the image of

R*t&®p+ BL — R is a ring of definition of R, so the statement follows by uniformity. [J

Combining the first part of the proof and the claim, we see that in the composition
R+®A+A;ro — R+®B+B:o — R;,

both maps have bounded p-torsion cokernel and become an isomorphism after inverting p.
Since the first term is p-torsionfree by the same flatness argument as before, it follows that
the composition is injective already before inverting p. This proves part (i).

Part (ii) follows exactly as in [Sch13a, Lemma 4.5]: By the explicit description of the inte-
gral subrings of rational localisations [Sch12, Lemma 6.4], respectively finite étale extensions
of a perfectoid algebra, there is for any € > 0 a subalgebra R;VE C RY that is topologically
finitely generated over B} and such that the cokernel RY /R, is p‘-torsion.

To deduce part (iii) from (i), consider the diagram

Hi (A, RY [p*) ———————— H[ (A, RL /p%)

| [

Hi (A, AT p®) @ a+ RT —— HE (A AL @4+ RY/p%).
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By part (i), the right vertical map has p?’-torsion kernel and cokernel. The left vertical
map is an isomorphism: A acts trivially on R* and AT, so Hl (A, —) = Homes (A A, ).

cts
The bottom map has p®-torsion kernel and cokernel by [Sch13a, Lemma 5.5], which says
that
Héts(Aa A;ro XA+ RJr/ps) = Héts(Aa A;Lc) DA+ R+/ps
and that H (A, AT) — H! (A, AL) is injective with p®-torsion cokernel.
It follows that the top map has p?’t®-torsion kernel and cokernel. The same works for

Hi (A, RY) when we instead use the last part of [Sch13a, Lemma 5.5]. O
As an immediate application, this shows more directly that X is sousperfectoid:

Lemma 2.16. The normalised traces AL, — A} induce canonical Ry,-linear and continuous
splittings tr,, : Rooc — Ry, such that for any © € Reo, we have tr,(z) — = for n — co.

Proof. By Lemma 2.14.1, we get such splittings by applying —® 4+ RT and inverting p. [
Proof of Proposition 2.9. For part 1, we may work locally and assume that X is toric. Let us
first assume Q¢ C K. Then the Cartan-Leray sequence [Heu22b, Proposition 2.18] for the

A-torsor X, — X induces isomorphisms H'(X,0) = H (A, O(X«)). By Lemma 2.14.3
and Proposition 2.7,
HE(A, 0(Xo)) = Hig (A, 0(X) = Hiy (A, O(T) @0 ey O(X) = HO(T, Q")EO(X).
This in particular shows that the cup product induces an isomorphism
A" R'v,.0 =5 R, 0.
Next, we prove part 2. For this we use the following Lemma:

Lemma 2.17 ([Bhal7, §3.4]). Let X be any stably uniform rigid space over K. Then there
is a canonical and functorial morphism of sheaves on Xg

MLy z,)[H] = R'v.0(1}.
When X is a rigid space, the first term is = Qx|x. Under this identification, when X is
moreover smooth, then this morphism agrees with the isomorphism from Proposition 2.7.

Proof. When K is algebraically closed, this is proved in [Bhal?7, §3.4]: The reference assumes
that X is a smooth rigid space, but the construction of the morphism goes through mutatis
mutandis when we replace the formal model X,f; by the site (Xan, OT).

The case of general K can be seen in the same way: We only need to see that

Lo, [3] = K{1}11].
Let C be the completion of an algebraic closure of K, then the transitivity triangle for
Z, — Kt — C7 yields a canonical isomorphism, compatible with Galois actions

Liciz, [ @1 € = Loviz, [,
The statement follows by taking Galois invariants, like in [Heu22b, Proposition 2.25]. O
Applying Lemma 2.17 to Z, we obtain a natural morphism
g*lelK — ¢*R'v, 0, — R, 0x,
and similarly for S. By functoriality, the following diagram commutes:
g*lelK ——— R, 0x

I |

g*f*le‘K —— "R, 0y
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But Y is perfectoid, so the bottom right term vanishes. By the cotangent sequence, we thus
obtain a natural morphism

9" Qs = R'v.Ox.
To see that this is an isomorphism, we can work locally on Z and thus assume that f factors
into an étale morphism Z — T? x S and the projection T¢ x S — S. Then X is étale over

T¢ x Y. The statement is then immediate from comparing Cartan-Leray sequences for the
toric towers T4 x S — T9 x S and T x Y — T4 x Y.

For general K, we deduce the results via Galois descent, exactly as in [Heu22b, Propo-
sition 2.25]: Let (C,C™) be the completion of an algebraic closure of (K,K™), let Q =
Gal(C|K) be the Galois group and X¢ the base-change. Then for any 4, j > 0 we have

HY(X, Q%) i=0

Hgts(QvHﬂg(XCvO)) = {0 i>0

since H}(X¢,0) = ﬁ&c(Xc) ~ O(Xc)F as Q-modules for k = (j) by part 1, and the
map H (Q,0(X¢)) = HL(Q,0(X0.00)) = Hi(Xo,0) = 0 for i > 0 is injective due to

Lemma 2.16. The Cartan—Leray sequence for X¢ — X now implies H"(X,0) = H°(X, Q’}()
for any n € N. Part 2 follows as the map h is an isomorphism after base-change to C'. 0

For a toric smoothoid space X, this gives an explicit description of Q x depending on f:

Lemma 2.18. Assume K contains QpY°. Then the chart f induces an isomorphism

HT; : Home (A, O(X)) = HL (A, O(Xs)) = HY(X,0) — HO(X,Qx)

cts

where the second map is from the Cartan—Leray sequence (Proposition A.4) for Xoo — X and
the last is from the Leray sequence for the morphism v : X, — X, using Proposition 2.9.

Proof. The first map is the isomorphism by Lemma 2.14.3. The second is an isomorphism as
H!(Xo0,O) = 0. The third is an isomorphism as H{ (X,0) =0 for i > 1 by Lemma 2.6. [J

Definition 2.19. Let ﬁ} C Qx be the finite free OF-submodule (depending on f) given by
the image of HTy : Homes(A, OF (X)) ®0+(x) O = Qx.

2.4. Non-cyclotomic base fields. Rather than deducing the case of general K from that
where K contains Q¢ by Galois descent, one can also give a more direct argument. We
record it since we need it later:

Assume that K does not contain all p-power roots of unity and consider the cyclotomic
extension K¥°| K obtained by adjoining them. For simplicity, let us assume that K contains at
least ¢,. Then Spa(K®°) — Spa(K) is a torsor under the profinite group @ := Gal(K“°|K) C
Z, such that Q =1+ p™Z, = Z, for some m € N.

Consider the base-change X¢ — Spa(K %) of X — Spa(K) along this extension. Denote
by (R¥¢, R%Y°) its global sections. Similarly, let (RS, R¥Y°T) be the global sections of the
base-change XY¢ — Spa(K“°) of Xo — Spa(K), as in the last section. Then

X3¢ — Spa(K“°) — Spa(K)
is again a pro-finite-étale Galois torsor for a group A which is canonically a split extension
0->A—=>A—>Q—0,

where A is the Galois group of X%° — Spa(K%°) as in the last section. Namely, A = A x Q
is the semi-direct product given by the action of @ C Z; by multiplication on A. Writing

elements of A as tuples (v, ), these act on KV(T+/P7) via (v,0) - T™ = ()™ T™.
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We can now describe R cs(A, R¥°T), as in Lemma 2.14. While calculations like these
are standard in p-adic Hodge theory, there is a major difference to the classical setting as in
[Tat67, §3]: For 0 # 4 € Z we have (@;yc(z')zﬂX = 0, but for perfectoid K we instead have:

Lemma 2.20. Fori € Z, we have K+V¢(i)@ £ K+ and H?, (Q, KT<(i)) £ 0 for j > 0.

Proof. Kt¥¢(i) with its Q-action defines an invertible O*-module L; on X := Spa(K, K™)
by descent from Spa(K<°), and HZ, (Q, K+¥(i)) computes H (X, L;) by the Cartan Leray

cts

sequence. But any such L; is trivial by [Heu22a, Corollary 2.28], so H7(X, L;) = 0. O

Lemma 2.21. (1) There is v > 0 such that for any s,i > 0, the kernel and cokernel of
Heyo (A, R [p®) — Hey (A, RIS [p°)

are annihilated by p?. The same is true for the map HE (A, RYY¢) — HE (A, RI&YC).

(2) The restriction HY (A, Rt /p®) — HL (A, R /p*)? is split surjective: a splitting
r is given by sending p : A — RYT /p* to the 1-cocycle r(p) : (v,0) — p(v). In the
limit over s, this also defines a splitting of HL (A, RT¥) — HL (A, RTve)@

cts
(3) As an RT-module, HL (A, RT)? is almost finite free of rank d.

Proof. Let A%® = A® K°. The main calculation is that for any 4,7 > 0 we have

cyc A+/p j = 07
cts(Q cts(A AY Jr/ )) {0 ] > 0.
Indeed, writing AVt /p® = @iz KT /p® - T, this follows directly from Lemma 2.20. Let
now ¢ > 0 be such that kernel and cokernel of the map A%t ® 4+ RY/p® — RTY¢/p® are
killed by p° for all s. Then H7, (Q, Hi (A, R /p*)) is p*-torsion for j = 1 and any i, and
vanishes for j > 1 since Q = Z,. By 1nﬂat10n—restriction, it follows that for any n > 1, the
map

H’ﬂ

cts

(A, RV /) =5 HP (A, R /p)
is surjective with p?“-torsion kernel. The exact same argument also works for RYt /p®; so
we can assume that there is ¢ > 0 independent of s such that in the commutative diagram

H{y (A, R /p®) —— H{ (A, RT/p*)?

| |

cts(A R+cyc/p ) — Héts(A7RgocyC/ps)Qa

the top, bottom and right map have p®-torsion kernel and cokernel, thus also the left map.

To see part 3, we use that Homeys(A, RYt) =2 RYH(—1)? as Rt-modules with Q-
action. We can regard R¥°(—1) with its Q-action as a descent datum for an invertible
O7T-module L along the cover XV¢ — X which has Galois group Q. In fact, since R%V¢(—1) =
R& i K¢(—1), this comes via pullback from the invertible O*-module Lg on Spa(K), asso-
ciated to the descent datum K+ (—1) for Spa(KCyC) — Spa(K). But Ly is free by [Heu22a,
Corollary 2.28], hence the global sections R%¢(—1)% of L are a free RT-module.

It remains to see part 2: As the elements of HL (A, RT¢/p*)? = Homs(A, RTY¢/p*)?
are precisely the @-equivariant homomorphisms, this is the elementary observation: O

Lemma 2.22. IfG is a topological group with continuous A-action such that A acts trivially,
then res: HY (A, G) — HL (A, G)? has a natural section sending p to sec(p): (7, 0) = p(7).

cts
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2.5. Higgs bundles on smoothoid spaces. Having introduced differentials on smoothoid
spaces, we obtain a notion of Higgs bundles:

Definition 2.23. Let X be a smoothoid space over K. A Higgs bundle on X is a pair
(E, ) consisting of a vector bundle E on X4 and 6 € H(X, End(E)®€Q% ) such that A0 = 0
in End(F) ® ﬁg(, where A was defined in (10). Explicitly, this means that for any local basis
of ﬁﬁ(, the coefficients of 8 commute. Any such 0 is called a Higgs field and can be written

asamapf: F > EQ® Q. A morphism of Higgs bundles is a morphism of the underlying
bundles that commutes with the Higgs fields written in this form.

Definition 2.24. Let X be a smoothoid space and let (E, ) be a Higgs bundle on X. Again
using the wedge product from (10), we can define the associated Higgs complex

Cliges(B:0) = [ES B0 M B> % Y Bo )

where the transition maps are defined as 0 : F ® OF 284, p 2O @ QF 99N B Okt

Passing to the image of Cij;uqs (£, 0) in the derived category Db(X4), we then set

RFHiggs (X? (E7 0)) = Rrét (X7 C;Iiggs(Eﬂ 0))
We call H*(X, (E,0)) := H*(RT Higes (X, (E,6))) the Dolbeault cohomology of (E,0).

3. RIGID GROUPS AS v-SHEAVES
In this short section, we briefly collect some background on rigid analytic group varieties:
Definition 3.1. A rigid group is a group object in the category of rigid spaces over K.
Since K has characteristic 0, a rigid group is automatically smooth [Farl9, Proposition 1].

Example 3.2. (1) Any algebraic group over K defines a rigid group via analytification.
(2) If G is a formal group scheme of topologically finite type over K its adic generic fibre
is a rigid group. A rigid group of this form is said to have good reduction.

As always, we identify G with the associated diamond, an abelian v-sheaf on Perfg.

3.1. The Lie algebra and its exponential. We now recall some basic constructions on
rigid groups, and refer to [Heu22a, §3] for more details.

Rigid groups are the non-archimedean analogues of complex Lie groups. One way in which
this analogy manifests itself is by the p-adic Lie algebra Lie group correspondence:

Let G be any rigid group, then its tangent space at the identity inherits the structure of
a Lie algebra g over K of dimension dimg g = dim G. We consider this as a v-sheaf via the
associated vector group over K, i.e. we set g(Y) = g ®x O(Y) on Perfg,. Then there is a
natural adjoint action ad : G — End(g). Sending a rigid group to its associated Lie algebra
defines an equivalence of categories after localising at the class of open subgroups. Moreover,
as for complex Lie groups, there is an exponential relating G and g:

Proposition 3.3 ([Heu22a, Proposition 3.5]). There is an open subgroup g° C g, with under-
lying rigid space is isomorphic to B, and a rigid open subgroup G° C G with an isomorphism
of rigid spaces

exp:g°® = G°
that sends open subgroups onto open subgroups, and is functorial in G.

Corollary 3.4. Any rigid group G has a neighbourhood basis (Uy)ren of 1 of open subgroups
Ui C G of good reduction whose underlying rigid space is isomorphic to B?.

Lemma 3.5 ([Heu22a, Lemma 3.10]). Let Y be any adic space over K.
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(1) If A,B € g°(Y) satisfy [A, B] =0, then exp(A) and exp(B) commute and
exp(A + B) = exp(A) exp(B).
(2) If g,h € G°(Y') commute, then [log(g),log(h)] =0 and log(gh) = log(g) + log(h).
(3) If g1 C g2 C g° with images G1 € G2 C G under exp and g € G1(Y') are such that
ad(g)(g1) C g2, then g=1G1g C Go. For A € g1(Y), we then have
exp(ad(g)(A4)) = g~ exp(A)g.

Proposition 3.6 ([Heu22a, §4.2]). If G has good reduction, then the Lie algebra of the formal
model induces a finite free OF -submodule g* C g. Let g} == p*-m - g*, then there is a > 0
such that exp is defined on g: for any k > a, and Gy, := exp(gz) is an open subgroup of G
such that for any a <r < s € Q with s < 2r —ag € Q, the exponential induces isomorphisms

exp gl /o) = Gr/Gs, exp:gh(X)/af(X) = Go(X)/Gs(X)
of abelian sheaves on Smd ¢, respectively of abelian groups for any X € Smdg.
The G}, can be described as the kernel of the reduction mod pFm. In particular:

Lemma 3.7 ([Heu22a, Lemma 4.17]). If G has good reduction, then we have G = hm, o G/Gy.

3.2. Torsors under rigid groups. We now recall the definition of G-torsors on diamonds,
which we studied in [Heu22a, §3].

Definition 3.8. Let X be any diamond and let 7 € {ét,v}. Then a G-torsor on X, is a
sheaf F on X, with a left action m : G X F — F by G such that there is a 7-cover of X' — X
where there is a G-equivariant isomorphism G x x X’ =5 F x x X’. A morphism of G-bundles
on X, is a G-equivariant morphism of sheaves on X..

It is clear that the set of isomorphism classes of G-torsors on X is given by H(X,G).

Remark 3.9. Any morphism of G-torsors is an isomorphism. So the category of GL,,-torsors
has the same objects as the category of vector bundles of rank n, but fewer morphisms.

Lemma 3.10 ([Heu22a, Proposition 3.16]). There is a natural fully faithful functor
{G-torsors on Xg} — {G-torsors on X, }
which on isomorphism classes induces the natural map H}, (X,G) — HY (X, G).
Finally, we recall the main technical results from [Heu22a] about G-torsors on adic spaces:

Lemma 3.11 ([Heu22a, Lemma 4.26]). If X is an affinoid perfectoid space and G is a rigid
group of good reduction. Then for any k > «, we have H: (X, Gy) = 1.

Proposition 3.12 ([Heu22a, Proposition 4.8]). Let G be a rigid group and let U C G be a
rigid open subgroup. Let X be any sousperfectoid space and let v : X,, — Xg be the natural
map. Then the morphism

R'v,.U — R'v,G

is surjective. If G is commutative, then RFv,U = RFv,G for all k > 1.

3.3. G-Higgs bundles. Like in complex geometry, one can generalise the notion of Higgs
bundles on smoothoid spaces from vector bundles to G-bundles for any rigid analytic group
G over K.

Definition 3.13. Let X be a smoothoid space. For any G-bundle F on Xg;, one defines
the adjoint bundle of E to be ad(E) := g x& E, the associated bundle with respect to the
adjoint action ad : G — GL(g). This has the natural structure of a vector bundle on Xgt.
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Example 3.14. If G = GL,,, then ad(F) = End(F) is the endomorphism bundle.
If E = G is the trivial bundle, then ad(E) = g. This holds for any F if G is commutative.

Since the adjoint action of G commutes with the Lie bracket on g, we obtain by functoriality
a Lie bracket on ad(E). We can use this to define a natural map

Arad(B)® Q% — ad(E)® 0%,

Definition 3.15. Let X be a smoothoid space over K.

(1) A G-Higgs bundle on X is a pair (F,0) of a G-bundle E on X4 and an element
0 € H(X,ad(E) @ Q1x) such that # A § = 0. Such 6 are called Higgs fields.

(2) We denote by Higgs the sheafification of the presheaf of pointed sets on Xg of iso-
morphism classes of G-Higgs bundles. Using Lemma 2.12, there is for any morphism
of smoothoids f’ : X’ — X a natural pullback map Higgs.(X) — Higgso(X’). We
can therefore also regard Higgs as a sheaf on the big étale site Smd g g.

i<j[Ai’Aj] ®57, A5j~

Remark 3.16. If G is commutative, then there is no interrelation between E and 6, and the
Higgs field condition is vacuous. Therefore 6 is in this case simply any section of g ® 2.

Lemma 3.17. There is a natural isomorphisms of sheaves of pointed sets
Higgsg = (9 Qx)"=*/G

given by interpreting the right hand side as a Higgs field on the trivial bundle. Here on the
right we form the sheaf quotient by the adjoint action of G.

Proof. The map from right to left is injective for presheaves, thus also after the sheafification.
It is surjective since for any G-Higgs bundle (E, #), the G-bundle FE is trivial étale-locally. O

Example 3.18. Explicitly, for G = GL,, we have Higgs; = (M,(K) ®x Qx)"=°/GL,,.

The notion of Higgs bundles is functorial in G, namely for any homomorphism ¢ : G — G’
of rigid groups there is a functor from G-Higgs bundles to G’-Higgs bundles defined by sending
(E,0) to (G' x¢ E,g’ x& 6). This defines a morphism of sheaves Higgs, — Higgsc:.

Example 3.19. If G C G’ is an open subgroup, then this morphism is clearly surjective. But
it might not be injective: For X = Spa(K(T)), the Higgs fields A1dT and A>dT on E = O?
for Ay == ({1) and Ay := () are conjugated over G’ = GL2(0) via (§7), but not over
G = GL3(O1). Hence they are different elements in the same fibre of Higgs, — Higgsq.

Nevertheless, if we just consider the kernel, i.e. the fibre over 0, we do have the following:

Lemma 3.20. (1) If f : X' — X is a morphism of smoothoid spaces such that the map

F*: Qx — fu.flx on Xe is injective, then Higgs,(X) — Higgs(X') has trivial kernel.

(2) If p: G — G’ is a homomorphism of rigid groups over K such that g — ¢’ is injective
(e.g. if @ is injective), then Higgso(X) — Higgse (X) has trivial kernel.

Example 3.21. (1) If f : X’ — X is an étale morphism with Zariski-dense image, then
Qxr = f*KNZX and Ox — f.Ox- is injective, hence the conditions of the lemma hold.
(2) Let X be a smooth rigid space and let g : Y’ — Y be a v-cover of perfectoid spaces.
Set f = (id,g) : X x Y’ = X x Y. Then again Qx = f*Qx, and Ox — f.Ox is
injective by the v-sheaf property. Thus the condition of the lemma holds.

Proof. We first observe that the surjective morphism of sheaves (g ® Q x)"=Y — Higgs has
trivial kernel since x € g is conjugated to 0 via the adjoint action if and only if x = 0.
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Let now z € Higgs;(X) be in the kernel. After passing to an étale cover X — X with
pullback X’ — X', we can assume that x lifts to ¥ € (g ® Qx)(X). Chasing the diagram

(8 ® Qx)"=*(X) —— Higgsa(X)

l l

(g ® 2x)"="(X') — Higgsa(X)

in which the map on the left is injective by assumption, we see that z =0, whence z = 0.
Part 2 can be seen similarly, using that (g ® Qx)"=" — (g’ ® Qx)"=0 is injective. O

4. FrROM G-HIGGS BUNDLES TO v-TOPOLOGICAL G-BUNDLES

With the preparations of the last section, we can now state our main result, the sheafified
correspondence between v-G-bundles and G-Higgs bundles:

Theorem 4.1. Let K be a perfectoid field over Q,. Let X be a smoothoid space over K (for
example a smooth rigid space) and let v : X,, — Xg be the natural morphism of sites. Let G
be a rigid group over K, regarded as a sheaf of groups G = G(O) on X,. Let g be the Lie
algebra. Then there is a canonical isomorphism of sheaves of pointed sets on Xet

HTlog : R'v.G = Higgs,

which is functorial in G, X and K. Here Higgs, = (g ® QX)A=O/G (see Definition 3.15).
If G is commutative, we more generally have for any n > 1 an isomorphism

HTlog : R"v,G =5 g ® ﬁ}

Remark 4.2. (1) The notions of G-torsors agrees on X, and Xqproct, as well as on Xppo6t if
X is smooth or perfectoid, by [Heu22a, Corollary 4.29]. It follows that in the hierarchy

X’U — quroét — Xproét — Xét,

replacing X, with Xqprost (0r Xproet) gives an equivalent formulation of Theorem 4.1.

(2) If G = GL,, then by Lemma 2.6.5 also the G-torsors on Xg and X,, are equivalent,
so we could replace v by the projection to X,,. But this is not true for general G.

(3) As mentioned in the introduction, the case of G = G, and smooth rigid X recovers
Scholze’s result that R"v, O = (2} for any n > 1. In [Heu2lb], we have studied the
case of G = Gyy. For all other G, the result is new already for smooth rigid X.

(4) If X is perfectoid, then Q% = 0 for all n > 1, hence Higgs, = 0. So this case recovers
[Heu22a, Theorem 1.1], which said that R'v,G = 0 in this case. That said, we note
that the cited result is used in the proof of Theorem 4.1.

(5) At least for commutative G, we can informally remember Theorem 4.1 as saying that
one can compute R'v,G(O) by a “chain rule” applied to the “composition” G(QO), with
g interpreted as the “derivative” of G, and ﬁ}( as the “derivative” of O.

(6) The functoriality in X and K means in other words that the morphisms HTlog for
varying X can be assembled to an isomorphism of sheaves on the big site Smd g 4¢.

(7) That K is perfectoid is necessary: For example, if K is instead discretely valued, then
already Spa(K’) has many non-trivial v-vector bundles, as described by Sen theory.

(8) Already for algebraic G like G = GL,, the proof goes by considering analytic open
subgroups of G, so the perspective of rigid groups is natural already in this case.

(9) Rigid groups are the p-adic analogues of complex Lie groups. However, in the context
of the complex Simpson correspondence (see Section 8.8), one usually only works with
reductive Lie groups, and we are not aware of any version without this assumption.
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The proof will take us two sections: In this section, we construct a canonical and functorial
morphism
U : Higgs, — R'v.G
by exponentiating cocycles. In the subsequent section, we show that ¥ is an isomorphism.

To prepare the construction, let g° C g be an open subgroup of the Lie algebra isomorphic
as a rigid group to O? that admits an exponential map of rigid spaces exp : g° — G. It
will in the following be irrelevant how large this subgroup g° is, as long as it is open and
thus satisfies g = Upenp *g°. It will be convenient to take g° small enough so that exp
still converges on p~'g°. By Proposition 3.3, the image of g° under exp defines a rigid open
subgroup

G° CG.
For any affinoid adic space X over K, the set G°(X) inherits the structure of a topological
group in a canonical way, with underlying topological space homeomorphic OF%(X) via exp.

4.1. The morphism V in the commutative case. By way of motivation, we first consider
the much simpler case that G is a commutative rigid group: Apart from G, and G,, and their
open subgroups, examples for such G include abelian/abeloid varieties and analytic p-divisible
groups in the sense of Fargues [Far19].

If G is commutative, then exp is a homomorphism and restricts to an isomorphism of rigid
groups exp : g° — G°. For any m > 0 we derive from this an isomorphism

exp: R™v,g° = R™v,G°.
Proof of Theorem 4.1 for commutative G. We begin by observing that by Proposition 3.12
applied to O C O, we have R"v, 0" = R™v, O = Q™. The projection formula then shows
R™1,g° = ¢° @ R™v,0" = g@ Q™.

Composing with exp, we obtain from this a canonical and functorial morphism

(11) Ve g@ Q™ = R™,g° 22 R™1,G° — R™1,G.
By Proposition 3.12 applied to G° C G, also the last morphism is an isomorphism. O

Theorem 4.1 for commutative G is already interesting for smooth rigid X, where as a
consequence, we get a generalisation of the Hodge—Tate spectral sequence, with G-coefficients:

Corollary 4.3. The Leray sequence for X, — Xg induces a first quadrant spectral sequence
Hj(X,6) ifj=0
Hi (X, O )@xg  ifj>0

Of course this simple construction of ¥ cannot work for general G since exp is then not
a homomorphism, and cannot be derived. The basic idea, going back to Faltings [Fal05], is
to represent both sides as group cohomology and apply exp to carefully chosen cocycles.

ij .
2

} = HY(X,G).

4.2. Preparations and choices. As long as we later prove that our construction is canonical
and functorial in X, it suffices to construct ¥ locally. We may therefore assume that
X = Spa(R, RT) is a toric affinoid smoothoid space in the sense of Definition 2.4. Note that
we do not fix a toric chart.

We begin by making some auxiliary choices, we later prove that the construction is inde-
pendent of these. We first choose any affinoid perfectoid pro-finite-étale Galois cover

X = Spa(R,R") — X = Spa(R, R*).

Remark 4.4. In practice, there are various concrete ways to choose this:
(1) If QY C K, we can choose a toric chart and consider the toric tower as in Section 2.3.
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(2) If Spec(O(X)) is connected, then any choice of base point z € X(K) induces an
affinoid perfectoid universal pro-finite-étale cover XX , defined as the inverse limit
over Zariski-connected finite étale covers of X together with a fixed lift & of x.
However, the greater generality is useful to show that the construction is canonical and
functorial. It also allows for a uniform treatment independent of whether Q7 C K or not.

Let us denote the Galois group of XX by 7, then X > Xisa pro-finite-étale m-torsor.
As HY(X,0) = 0, the Cartan-Leray sequence Proposition A.4 induces an isomorphism

H) (7, R) = H'(X,0) = H(X,Qx).

cts

Since X is toric, H°(X, SNIX) is finite free over R. Moreover, by Lemma 2.14 we can up to
bounded torsion identify H(X,O%) with an R*-sublattice of rank d of H°(X, ). Thus

HO(X,Q)° :=im (HY(m, RY) £ HL(X,0T) - H(X,Q))

cts

is an open R*-submodule of H°(X, ﬁ) that generates the whole module upon inverting p.
We now choose a basis § = (81, ...,04) of H(X,Q) as an R-module that already lies in
m- HO(X,Q)°. Let

HY(X,Q)t € HO(X,Q)°
be the finite free R*-sublattice spanned by §. We also write this as H°(X, §)+,5 to indicate
the dependence on d. Third, we now choose for each §; a representative p; : 1 — R* in the

set of continuous 1-cocycles Z1(m, ﬁ"’) that maps to §; under the map
!

HT o[- : ZL (m, BY) L HY (r, R*) = HA (X, 0) 25 HO(X, Q).

cts
Choices 4.5. In summary, we have made the following choices:
(1) an affinoid perfectoid pro-finite-étale cover X — X that is Galois with group T,
(2) a basis & = (81,...,64) of HO(X, ),
(3) a set of representative 1-cocycles p; € ZL.(m, 0T (X)) such that HT([p;]) = 6;.

Of course the p; determine the d;, but it is later helpful to see this choice as two steps.

Remark 4.6. If Q3*° C K and X — X is a toric cover, then by Lemma 2.14 one can always
choose p; of the form A = 7w — R™. But the proof of independence of the toric chart would
lead back to more general p;, which also allows to treat more general perfectoid K over Q,.

4.3. The integral morphism ®*: exponentiating cocycles. Having made Choices 4.5,
we now construct as the first step a map

ol (HY(X, Q)" @gs 0°(R)"™0 — HL, (1, G°(R)).

grp
Let 6 be an element on the left. Since g° is a finite free OF-module, H*(X, Q)" @ p+ g°(R)
is a finite free RT-module. Therefore § has a unique expansion § = 2?21 0; ® A; in terms of

the basis & of the free Rt-module HO(X, Q)" for some A4; € g°(R). The condition § A0 = 0
means precisely that the A; commute with each other. We now first define a map

o HY(X, Q)" @pt 0°(R) —  Mapg(m, G°(R))

grp
d d

Z i ®A — (’y — Hexp(pi(’y) . AZ))
i=1 i=1

This is well-defined as p; has image in RT and A; € g°(R), so their product lies in g°(R).
The commutativity condition in Lemma 3.5 is precisely the reason why the definition is
only really sensible when we restrict to Higgs fields, where the matrices A; commute:
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Lemma 4.7. IfO N0 =0, then CEgrp(Q) is a 1-cocycle. Hence 5g+rp induces a map

Ol (HOX, Q)" @pe 0°(R)=0 = Hiy(m, G°(R)).

grp -
Proof. Using that p; € Z4 (m, RT), we have by Definition A.1 for any 1,72 € 7
‘5;;)(9)(71 “Y2) = Hz exp(pi(71)Ai + 7 pi(72)As).

Since p; (1) and v p;(72) are scalars in R, any two elements of the subset of g° (ﬁ"’) given
by pi(71)A; and 1 p;(y2)A; for i = 1,...,d still commute. We may thus write this as

= IT; exp(pi(11)As) - 7 L exp(pi(12) Ai) = @, (0)(11) - 1y (0) (32)- O

Via the map H} (7, G°(R)) — H!(X,G°) of the Cartan—Leray sequence, we get a map

~ dt ~
OF : (H(X, Q)T @p+ 0°(R)"™° = Hey(m,G°(R)) — Hy (X, G°) = Hy (X, G).
If we want to indicate X, G or the choice of § and p, we add this as a subscript, e.g. @}’5.

At this point, we have associated to any “small” G-Higgs field on the trivial bundle a
“small” v-G-bundle. This construction is in fact functorial, but not independent of our
choices. However, we will later prove that the construction becomes independent of choices
after sheafifying. As an intermediate step, we already need the following weaker statement:

a

Lemma 4.8. Foreachi=1,...,d, let p} € ZL (m, R") be such that [p] = [pi] in HLy(m, RT) <
HY(X,0%). Then ®F is the same whether it is computed using p; or pl.

This is weaker than independence of the choice of p;, as p; is by definition also a preimage
of §; under the map HT : H}(X,0") — H°(X, Q) which is in general not injective.

Proof. That [p;] = [p}] means that there is z; € R such that p}(v) = v*z; + ps(y) — a; for
all v € m. Since v*x and z are scalars in R, all the v*zA;, xA; and p}(7)A; in g°(R) still
commute with each other for all i. Consequently, for any v € m we have

[T; exp(pi(v)Ai) = 7v* (T1; exp(xiAy)) - TT; exp(pi(7)A) - (TT; exp(aiAy)

Setting y := [], exp(x;4;) € G°(R), we see that [L; exp(pi(7)A;) and T, exp(p}(v)A;)
agree up to the y-conjugation by y and thus have the same image in H} (7, G°(R)). O

We will frequently use the following simple observation to make cocycles small:

Lemma 4.9. Let0 #a € K. Suppose that each p; has image in aR™. Then a=1§ is a basis
of H°(X,Q) contained in the image of HX(X,OF), and a™p is a choice of integral cocycle
representatives for a='6. Then on (H°(X,Q)T° @pz+ g°(R)) =" we have (I):‘lp = &F, but
(I):*lp is now defined on the larger space (H°(X, §)+’5 ®p+ a g°(R))"N=0.

Proof. Clear from the definition by writing 4; - p; = ad; - a ' p;. O

4.4. Extension to all Higgs field. Next, we extend ®* to a morphism on all of (H°(X, ﬁ)@
g)"=%. For this, we first note that already the case of G = G,, and X = B? shows that
HTlog: H!(X,G,,) — H°(X,Q) is in general not surjective, see [Heu22b, §6]. We can there-
fore only expect ®T to extend to all Higgs fields after étale sheafification on X, i.e. after
passing from H!(X,G) to R'v.G.

We therefore now compose ® with the map from the Leray sequence of v : X, — Xy

Ut (HO(X, Q) @ ¢°(K)M=0 25 HI(X,G) = R'n.G(X).
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As before, we denote this by \I/} or \Ilj( 5 etc. if we want to indicate X, G, or our choices.
This is the map that we now extend to all Higgs fields: The basic idea for doing so is that
every Higgs fields becomes small on a finite Galois cover, by the following two lemmas.

Lemma 4.10. If X — X' — X is a sub-cover such that f : X' — X is finite étale, then
f*ﬁx =Qx by Lemma 2.13. Therefore Choices 4.5 induce natural choices for X':
(1) For the Galois cover we use X > X', whose Galois group is an open subgroup ©' C .
(2) For the basis of H*(X',Q) we use the image of & under HO(X,Q) — HO(X', Q).
(8) For the representatives we use the restriction of the p; to w'.

Lemma 4.11. Let k € N. For any small enough normal open subgroup ©’ C m corresponding
to a finite étale Galois cover f : X' — X, the induced cocycles p; from Lemma 4.10 have
image in p*O*(R). In particular, for any 0 € (H°(X,Q) @k ¢(K))"=°, we can arrange that

70 e HO(X' )t @pv g°(K)  where §' := p~*6.

Proof. Since p;: m — OF(X) is continuous, pi_l(pkO“‘()?)) C 7 is an open neighbourhood of
the identity. It therefore contains an open normal subgroup 7’ C w. This corresponds to a
finite étale cover X’ — X on which the restriction of p; to 7’ maps into p*O*(X). O

The idea is now to pass to such a cover X’ — X and apply \Ilj}, there. In order to be able
to use this to extend UE to (H(X, Q) @k g(K))"=°, we need to see that we can descend the
image of \I/}L(, back to X. For this we use a first instance of functoriality of ¥ in X:

Lemma 4.12. Let f : X — X' — X be a subcover such that X' — X is finite étale and
Galois with group Q. Let & and p' be the choices induced by Lemma 4.10. Then the map
@},’5,&, C(HY(X', Q)T @+ g°(K))N=0 = HX (X', G) is equivariant for the natural Q-actions
on either side. In particular, so is ‘I/},.

Proof. Write 7/ for the Galois group of X — X', then Q = 7/x’. Consider the restriction

res : Hclts(Tra éJr) - Hclts(ﬂ—/a éJr)Q’
where we recall that the natural action of Q on classes in H (', Rt) is given for g € Q with
any lift g to 7 by [p] = g[p] := [gp(g~" — g)]. Using that [p;] = glpi] in Hi(7', OF(X))%, we
may by Lemma 4.8 use either of p or gp(g~! — §) to compute @},.

Let 6 = 6; ® A; be in the domain of @§/75,,p,, then for any g € m with image ¢ in Q,
@ (90) = [y = [T exp(pi(y) - gA)]-
= [y = [T, exp(gpi(3~"79) - §A)] = 92X, (0)

because A; € g(X') C g(X), so we can write gA; = §A, inside g(X). O

We are now prepared to define U: For any 0 = 3.6, ® 4; € (H°(X,Q) @k g(K)) =, let
k € N be such that p*A; € g°(X) for all i. Using Lemma 4.11 we find a Galois subcover
X — X' — X with Galois group @ where all p~*p; become integral with respect to p~ ko,
so that 6 is in the domain of ¥}, -5+ Then since 0 € (HY(X',Q) @k g(K))¥, Lemma 4.12
implies that

o i(0) € (R'G(X) = RGX)

as R'v,G isNa sheaf on X¢;. Using Lemma 4.9, we see that \IIJF,’pfké(é)) = @;,5(0) for any
0 € (H(X,0)t @+ g°(K))=", so this construction is compatible with the integral one.
Since any two finite étale sub-covers of X — X have a common finite étale cover under X,

this also shows that for any two covers X’ — X and X” — X on which 6 becomes small
enough, we have ¥%,(0) = U, () inside of R'v.G(X). Thus the following is well-defined:
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Definition 4.13. In the colimit over finite étale sub-covers X — X’ — X , we obtain a map
Uy : HO(X,Q©9)"™" = R'nG(X), 60— lim UL, (6).
X'—=X

The following lemma summarises the above discussion of compatibility for varying X’:

Lemma 4.14. Let X - X' — X be a finite étale sub-cover. Then using the induced choices
of Lemma 4.10 for X' to compute Vx., the following diagram commutes:

HOX', Qg =" 2% R, G(X')
Ul Ul
HO(X,Q®g)"=" —2X, R1Y,G(X).

4.5. Independence of choice, and functoriality. While our definition of ¥x a priori
depends on Choices 4.5, we now check that the result is canonical. We begin by showing that
U x is independent of Choices 4.5.3, strengthening Lemma 4.15:

Lemma 4.15. Ux does not depend on the choice of integral 1-cocycles p; such that [p;] = 6;.

Proof. Let p, € Z4 (m, R") be such that [p;] = [p}] in HY, (7, R). Then there is z € R with
(12) Py =7z + pi(y) —a  forall y € .

Claim 4.16. For any € > 0, there is a finite étale subcover X = X' — X with Galois group
7' C 7 on which we can find x € R such that (12) holds for v € ' and such that p°x € RT.

Proof. Since (12) implies (y—1)z € R for all y € , there is k € N such that y := pree Rt
satisfies (7 — 1)y € p* R for all v, so the image 7 of y in H°(X,07%/p*) is m-invariant.

By [Heu22a, Corollary 2.16], H*(X, 0% /p*)™ = H°(X, OF /p*). The short exact sequences

0— O"(X")/p* = OF Jp"(X') —» HY(X',0")[p*] = 0

in the colimit over all X — X’ — X show that liﬂHl(X’,Oﬂ[pk] = HY(X,0M)[p*] £ 0.
Hence there is X’ such that p<g lifts to O*(X’). Then py € O (X') + p*OT(X) which
implies p‘z € O(X') + OT(X). As z is only determined by (12) up to the difference of an
element in O(X’), we can thus change z to arrange for p°z to be in R* = O (X). O

By Lemma 4.14, we may check the independence on X’ — X. Let now § =5 4§, ® A; €
(H(X, Q) ®@p+ g°(R))"=, then by the claim, we can assume that z- A;, v*z- A; € p~g°(X)
where exp still converges. Now the statement follows exactly as in Lemma 4.8. (]

Lemma 4.17. Uy does not depend on the choice of Galois cover X > X.

Proof. We first note that if X = X = X is any dominating pro-finite-étale Galois cover,
then it is clear from functoriality of the Cartan-Leray sequence that the construction for X is
compatible with that of X’. Therefore, if X 1 — X and X2 — X are any two pro-finite-étale
Galois cover such that there exists a pro-finite-étale Galois cover X3 — X that dominates
both )~(1 and )~(2, then the construction for either agrees with that for )~(3. It now suffices to
observe that such a simultaneous dominating cover always exists in the case that X, — X is
the universal cover from Remark 4.4.2: But here any finite étale cover of )?2 is split, hence
again Galois over X, from which it is clear that we can find such a cover )~(3. O

Remark 4.18. Given that the proof is easy, and that X — X could simply be induced by a
choice of base-point, part 1 may look like the most innocuous part of Choices 4.5. However,
it is this choice that keeps us from upgrading the construction to a functor from all Higgs
bundles to v-bundles: The crucial point is that there is no canonical choice of )2'3 in the
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above proof: Suppose we are given two base points x; and zo of X. Let X; — X and
X2 — X be the associated pro-finite-étale universal covers from Remark 4.4.2. Any choice
of lift 5 of x1 to Xz induces an 1somorph1sm ¢ : X1 = Xg over X sending T to Zo, and
an isomorphism of Galois groups m (X, 1) — 71 (X, x9) for which ¢ is equivariant. Let
pi » m(X,x9) — O+(X2) be any representative cocycles with respect to xo for the given
basis d;. Then ¢*p; := [y + ¢ o pi(¢poyo ¢ 1) is a cocycle in chts(m(X, 1), 0% (X1)) that
represent the §; with respect to x;. For this choice, we have ‘I)X,df‘pm =¢*o <I>§ r22 by the
Lemma. However, the explicit cocycle ¢*p; depends on the choice of ¢, and thus on Zy. Only
the associated element in group cohomology is independent of this choice.

Lemma 4.19. Ux is independent of the choice of basis § of H°(X, §~2), Choices 4.5.2.
Proof. Let &' = (81,...,68;) be any other basis lying in H%(X, Q)°. Choose P € Zh(m, RY)
representing the ¢7. Then §; = 3, b;;d; for some b;; € O(X), and 3, 6; ® A; = 3,67 @ A’
for A; =Y, bijA;. To see that \IJX75 =Ty, we may by Lemma 4.14 pass to a finite étale
cover X' — X, so by Lemma 4.11 we may assume that b;;p’; € ZL (', R*) for all 4,j. Then
pi == bijp; € ZL. (' , R*) represents §;, so by Lemma 4.15 we may use it to compute
U 5. Now since bijpj( )A; € go(fi) for any « in the Galois group of X > X', we have

o7 5(0)(v) = [T explpi(v)A5) = [T exp(3; bigpy (1) Ai) = [T, exp(p(v) A)) = @7 5,(0) (7).
It follows that the same is true for \I'}, and thus for ¥x. O

In summary, Lemmas 4.15, 4.17 and 4.19 show that ¥y is independent of Choices 4.5,
hence canonical. Next, we show functoriality in X:

Lemma 4.20. For any morphism f: Xo — X1 of toric smoothoid spaces, the following
diagram commutes:

HOX,, Q@) =" X9, Rl G(X))

lf* Jf*

HO(X, 0 @ g)"=0 X2, R1y, G(X,)

Proof. Choose a sequential pro-finite-étale Galois cover X, = @nGN X1, — Xy with group
w1 as in Choices 4.5. The pullback )?1 X x, Xo — Xo is a pro-finite-étale m-torsor over Xo,
but not necessarily perfectoid. But we can find a sequential affinoid perfectoid Galois cover
X2 — Xo with group mo that dominates Xl X x, Xo. We thus get a morphlsm f X2 — Xl
over f: Xo — X3, and a quotient map ¢ : mo9 — 7 with respect to which f is equivariant.
By functoriality of the Cartan-Leray sequence, this induces a commutative diagram

Hl(m1,0(X1)) —— Hy(X,,0) —— H(X1,Q)

(13) | Jr I

Hclts(TQ,O(Xg)) Emd H%(XQ,O) E— HO(X27Q)
where for any 1-cocycle p in the top left, we define f*p : 2 2, ™ 5 O(X)) Ei O(X5).

Let 01 be any basis in H(X1, Q)° and 8, any basis in H(X», €)°, and choose representative
integral cocycles p; and ps. Then we can find b;; € O(X3) such that f*§;; = Zj b;;02,;. For
any 6 = Zz 61,1‘ ® A; with A; € g(Xl) set A; = El bijf*Ai, then f*0 = Zj (520' X A;

Choose now a finite étale sub-cover X{ — X; such that we can take A; € g°(X]). Let
XY — X, be the pullback. Then by Lemma 4.11, we can find a finite étale sub-cover
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X, = X5 — XY of X, with Galois group 7} such that b;;pe ; € Z}

cts

(h, O (X)) for all i, j.
The composition f': X} — X4 — X7 is an intermediate morphism over f and under f.
By definition, we can now use ®%, ,, o compute Wx, (6): This yields
19

fred, , (0) = [y = IT; exp(f” pra(v).f* Ai)].

By the commutative diagram (13) (applied to f': X} — X7), the L-cocycle f"p1,;, defined

as the restriction of f*p;,; to mh C ma, represents f*8;; € H°(X4,€). The same is true for

o= bijpa € ZL (7h, 0(X3)). Tt follows that there is z; € O(X3) such that
(f"pri)(v) =7 @i+ poi(y) — @i forall y € m.

Let k € N be such that p*z; € OF(X5) and thus pFy*z; € OF(Xy) for all 7. After possibly
increasing X; — X; and X} — X5, which by Lemmas 4.11 and 4.19 allows us to replace §;
by p~%61, and thus A; by p*A;, we can then assume that y*z; - f*A4; € go()zz) for all ~.
Similarly, we can assume that the b;; f*A; are in g"()N(g), and then so are the A;.

The lemma now follows from the same calculation as in the previous lemmas: By the usual
commutativity argument we see that inside HZ (75, G°(X,)), we have for any 7 € ):

F7 0%, 0) = [y = TTiexp(ph;(7) - f*Ai)] = [y = 1 explpz,(v) - A))] = @F, , (f70)
The functoriality of ¥ follows in the colimit over sub-covers of )?1 — X7 and )?2 — Xo. O

As a consequence of Lemma 4.20, we see that for any smoothoid X, the maps W/ for the
basis of toric X’ — X in Xy glue to a morphism of sheaves of pointed sets on X

Uy : (Q®9)"=" = R'v,G.
Lemma 4.21. Ux factors through the quotient by the adjoint action of G on ((NZ ® g)"=v.

Proof. Tt suffices to prove this locally. Let thus X be any toric smoothoid space, let B € G(X),
and let 6 = Zle 5; ® A;. Let k € N be large enough such that p*ad(B)(4;) € g°(X) for all
i. After choosing X’ — X large enough, we may by Lemma 4.19 replace § by p~*¢ and thus
A; by pFA;, so that ad(B)(4;) € g°(X). Then by Lemma 3.5.3,

O3 ,(ad(B)(0))(7) = IT; exp(pi(y) - ad(B)(A)) = BeL, ,(0)(y) B~

for all v € 7/, where 7’ is the Galois group of X — X'. Since B € G(X), we have v*B = B
for all v € #’. If B € G°(R), this shows that @},’p(ad(B)(G)) is equal to @},W(ﬁ) in

HL (7',G°(X)). In general, one easily verifies directly that the images in H}(X,G) agree:
Namely, B defines an isomorphism between the associated v-G-torsors on X. 0

Using Lemma 3.17, this finally induces the desired morphism of sheaves on Xt
(14) U : Higgs; — R'v.G.
The functoriality of ¥ in G is clear from functoriality of the exponential. In summary:
Proposition 4.22. The morphism ¥ is canonical and functorial in G and X.

In particular, we can assemble the ¥ to a canonical morphism on Smdg ¢¢. At this point,
we have constructed a candidate for the isomorphism in Theorem 4.1.
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5. FROM v-TOPOLOGICAL GG-BUNDLES TO G-HIGGS BUNDLES

Let X be any smoothoid space over K. The goal of this section is to prove that the
morphism ¥ from (14) is an isomorphism. For this, we may again localise and assume that
X is toric.

Following Faltings in the case of GL,, the basic idea is as follows: Assume that X admits
a pro-finite-étale Galois cover X, — X with some abelian Galois group A. Let now u C g°
be any open subgroup and let U C G° be its image under exp. Then U(X) C G°(U) inherits
from g°(U) the structure of a topological group. We consider the continuous homomorphisms
p: A — U(X). The inclusion U(X) C U(X) and the Cartan-Leray map for Xoo — X define
natural maps

Hom,s (A, U(X)) — H}

cts

(AU(Xy)) = HYX,U) - HX (X, Q)

that associate a v-G-bundle V on X to p. On the other hand, the fact that A is abelian
allows us to associate a Higgs bundle to p by composing with the logarithm map

ps [logop: AL U(X) 2% g(X)] € HE

cts

(A,9(X)) = H(X,Q®g).

By Lemma 3.5, as A is abelian, this satisfies the Higgs field condition, thus defines a Higgs
field on the trivial G-bundle. This is the Higgs bundle that we would like to associate to V.

However, it is not clear whether any v-G-bundle arises from such an “abelian” cocycle p
(surjectivity of ), and whether this construction is independent of the choice of p (injectivity
of U). The goal of this section is to show that both hold after sheafification.

5.1. Abelian G-bundles. In order to carry out this strategy, let us first assume that Q¥ C
K. We relax this condition in the next subsection. We fix a toric chart, by Definition 2.4 this
is a standard-étale map

f:X—=TIxY

where Y is an affinoid perfectoid space and T¢ is some rigid torus. Using notation as in
Section 2.3, f induces a perfectoid cover X, — X which is an affinoid perfectoid A := Zg(l)—
torsor due to the assumption on K. We write X = Spa(R, R") and X, = Spa(R, RL).

Definition 5.1. Let us write Z2P(U) for the sheaf on Xy that sends Y € Xy to the set
Hom s (A, U(O(Y))). We call this the “sheaf of abelian cocycles on X¢”. Consider the map

Wio : 2*°(U)(X) = Hi(A,U(R)) - By (A, U(Rw)) » H(X, Q).

Since the action of A on U(R) is trivial, the first map can be described as the quotient with
respect to the conjugation action by U(R). The third map is the Cartan—Leray map.
Composing Wy with the sheafification on X, we obtain a morphism of sheaves on Xg;

Wy 2 2°°(U) = R'w.G.

It is clear that Wy is functorial in f and U (for morphisms as in Definition 2.4.2), thus so
is W .. We will often drop the subscript U from notation when it is clear from context.

We now explain how Wy allows us to define partial inverses of ¥ on the image of Wy: Recall

from Lemma 2.18 that f induces an isomorphism HT : Homes (A, O(X)) — HO(X, Q). By
tensoring with the Lie algebra, this induces an isomorphism of sheaves on Xg;

HT; : Home (A, g) = g @ €.
Under HTYy, the subsheaf of Higgs fields (g ® Q)AZO gets identified with the subsheaf
Zab(g) g HomctS(Aa g)
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consisting of those ¢ : A — g(Y) for Y € X4 with [¢(z), ¢(y)] = 0 for all x,y € A. We thus
have an isomorphism

HT; : 2°°(g) = (g0 Q)"0
Consider now the subsheaf Z#P(u) C Z#P(g) of homomorphisms ¢ with image in u. On any
such homomorphism ¢, the exponential exp op converges, and the commutativity condition
is by Lemma 3.5 equivalent to exp oy being a homomorphism. We thus have a map

exp : 2% (u) = z2P(U)
which has an inverse defined by log. We will use this to compare ¥ to the map Wy.
5.2. A non-cyclotomic variant. In order to allow for more general K, we also need a non-

cyclotomic variant: Assume that Q" ¢ K, but ¢, € K. With notation as in Section 2.4,
there is then a A-torsor

X% = Spa(RIC, RYH) — XV = Spa(RY°, RY") — X = Spa(R, R")
given by base-change to the cyclotomic extension K<¢|K. Lemma 2.22 gives a natural section
sec : Homgs (A, U(RY))? — HL (A, U(RY))

Definition 5.2. Write Z2%(U)(X) for the set Homeys(A, U(RY¢))?. Composing sec with
the Cartan—Leray map for the cover X¥¢ — X, we obtain a map Wy y defined as

Wiy 2P2(U)(X) 25 HL (A U(RES)) — HY(X,U) — HY (X, G).
Replacing X by objects in X¢;, the Z2P(U) define a sheaf of pointed sets Z2°(U) on X, and
as before, W; ; defines upon sheafification on Xg a morphism Wy ¢ : 2°*(U) — R'v,G.
Second, for the Lie algebra, we observe that we have an isomorphism
HT; : Homes (A, g(RY)? =5 HY (A, g(RY) =5 g2 0,

this is clear for g = O and in general follows by tensoring with g. As before, we then write
Zab(g)(X) C Homes(A, g(RY€))? for those ¢ : A — g(RY) such that [o(z),¢(y)] = 0
for all z,y € A. This defines a sheaf 2Z2P(g) that HT; identifies with (g ® 2)"=°. Let
Z2(u) C Z?P(g) be the sheaf of those homomorphism with image in u(R%°). With these
definitions, composing with the exponential again defines an isomorphism

exp : 2% (u) =5 Z22P(U).
As the cocycles in ZL (A, u(RY)) and ZL (A, U(RY°)) associated via sec still satisfy the

cts
commutativity condition, exp and log commute with passing from A-cocycles to A-cocycles.

5.3. Computing Vs with abelian cocycles. Assume from now on that we are in either
of the two setups of the last two subsections. We can now use abelian cocycles depending on
the choice of toric chart to compute ¥¢:

Proposition 5.3. The following diagram commutes:
Zo(u) —=— Z*(U)
(15) HTfl wf,UJ
(g Q) =°/G -2 R, G
The morphism HT; on the left has trivial fibre over 0.

Remark 5.4. Diagram (15) is the reason for the name HTlog for the inverse of .

The role of the morphism Wy iy is therefore that it allows us to define a partial inverse of
¥ on the image of Wy by applying log to abelian cocycles p € Z2(1).
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Proof. We first assume that Q¥ C K: We may then compute ¥ using the following choices:
For the Galois cover, we take the toric cover X := Xo — X. Fix an isomorphism A 2 Zg,
then Homes(A, OF(X)) = O (X)%. This induces an integral basis & of HO(X, Q) via the
map HT from Lemma 2.18. Moreover, the left hand side defines canonical representatives
pi € 2L (A, 0T (X)) of the §;. By Lemma 4.15, we can now use (I)}p to compute U¥.

cts

With these choices, any 6 = 5, ® A; € (u® Q)AZO is sent by @},p to the cocycle

A= UX), v [Liexp(pi(v)Ai) = exp(3; pi(7)As)
The associated G-torsor is exactly Wy y(exp(6)) by definition, so the square (15) commutes.
It Qe ¢ K, we use the cover X&¥° — X from Section 5.2. By Lemma 2.21.3, we have

Homs(A, OF (RY€))@ = OF(R)* as OF(R)-modules. Tensor with m and let p}, ..., p/, be
the images of the standard basis of pO*(R)? on the left hand side, then via the map

Homees (A, OF (RY)Q =% HY (A, 0F(RY)) — HY(X,0) &5 HO(X,Q)°,

the images of the p} define an integral basis. Let p1,...,pqs be the images of the p} in
HL (A, OF(RYC)). Computing ¥ for these choices proves the statement, as before. O

5.4. Surjectivity of U. The map Wy ¢y cannot in general be surjective as the map H} (X,U) —
H!(X,@G) is not in general surjective. However, it turns out that for U small enough, this is
the only obstruction, namely we now prove that any v-G-bundle on X becomes abelian on an
étale cover. For this we adapt Faltings’ method from [Fal05, §2], using the technical means
prepared in §2.

Proposition 5.5. Assume that (, € K. Let G be a rigid group of good reduction over K.
Then there is ¢ > 0 such that with U := G, as defined in Proposition 3.6, the following hold
for the map Wy := Wy from Definition 5.1 (if Q¥ C K ) or Definition 5.2 (if Q5Y° ¢ K):
(1) Wy has the same image as the natural map H!(X,G.) = H} (X, G).
(2) Assume that Q¢ C K. Then for any two homomorphisms ¢1,p2 : A — Go(X) with
Wi(p1) = We(pa), there is g € G(X) such that p1(v) = gp2(v)g™! for all v € A.
Moreover, we can choose ¢ uniformly among all finite étale subcovers of Xoo — X.

We will see at the end of Section 6.1 that part 2 also holds for general K.

Proof. Let us first explain the argument in the simpler case that QY C K: Let «, 5 be as in
Lemma 2.14 and let v = 28 + a. We claim that any ¢ > 5y does the job. To see this, we can
argue essentially as in [Fal05, Lemma 1.(i)], except that further care needs to be taken in our
much more general setting, as the “isomorphism up to torsion”-results are weaker.

It is clear from the construction that Wy factors through the image of H!(X,G.). Con-
versely, let z € H}(X,G.), then by Lemma 3.11, this x becomes trivial in H}(Xo,G.) and

thus comes from an element in H} (A, G.(Rs)) via the Cartan—Leray sequence. Let

p: A= G(Rx) C G(Rw)

be any 1-cocycle representing x. In the following, for any s > 0 let us write ps for the image
of pin HY (A, G/Gs(Rw)). Then p. = 1. We consider for varying s > ¢ the natural map

hs : Homcts(Aa G(R)/GS(R>) — H) (Av G/GS(ROO))

cts

as well as for any ¢ < k < s the reduction map
r : Homeis (A, G(R)/Gs(R)) — Homets (A, G(R)/Gr(R)).

Set t := 3y. We will inductively construct a compatible system of continuous homomor-
phisms ¢4 : A — G(R)/Gs(R) for any s > ¢ such that hs(ps) = ps and 7(ps) = 1.
We start with s = ¢, for which we can take s := 1 to be the trivial representation.
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For the induction, we claim that we can find a lift of the reduction 7,_2+(¢s) to a ho-
momorphism ¢, 1 A = G(R)/Gsi(R) such that hsiy(¢f,,) = psi. Note that since
s > ¢ > by, this still satisfies 74(p, ) = 7¢(ps) = 1, so that we can then lift ¢, inductively.

For the claim, the conditions imply s +¢ < 2s — ay, so that by Proposition 3.6 we have a
short exact sequence

0*)@?_ — G/G5+t — G/Gs — ].,

where g := g¢ /g, is isomorphic to (mO*/ptmO*T)4mE Tt therefore stays exact upon
evaluation at the affinoid perfectoid Xo,. For the same reason, g; (Rs) = g (Reo) /D"
On the other hand, by the second part of Proposition 3.6, we also have an exact sequence

(16) 0— g9 (R)/p" = G(R)/Gs44(R) = G(R)/Gs(R) — 1

Taking continuous A-cohomology of both sequences, we thus obtain a commutative diagram

Hi (A, 85 (Roo) /9') — Ho(A, G/Gori(Ra)) — Hiy(A, G /G (Rec))

1 oo I

Homes (A, g (R)/p') — Homeis(A, G(R)/Gs44(R)) — Homes(A, G(R)/Gs(R)).

By induction hypothesis, the image of psy¢ in the top right has a preimage ¢ under h;.
Hence there is b = b, € G/G4(Ry) such that b=1 - p(7) - 7*b = @4(7) for all v € A.
We now repeatedly use that by Lemma 2.14, the map

(17) H (A g0 (R)/p") — Hey (A, 85 (Roo) /9')

has p7-torsion kernel and cokernel for any ¢ > 1.

The bottom row of the above diagram is still left-exact, but not necessarily right-exact (it
is not clear that one can lift the images to G(R)/Gs4+(R) in such a way that they commute).
However, as the term on the left in (16) is an abelian group, the obstruction to lifting ¢
to the middle of the bottom row is a class in HZ (A, g¢ (R)/p!) by Proposition A.3.3. This
class is mapped to 0 under the map (17) for i = 2 since p, does lift and the obstruction class
is functorial. As the kernel of (17) is killed by p?, it follows that after reducing the whole

diagram mod p7, we can find a lift ¢ of ¢4 to the middle of the bottom row of the diagram

Hi (A, 85 (Roo) /1) — Ho (A, G/Gast—r(Ro)) — Hyo(A, GGy (Rec))

1 Thmﬂ Th

Homeis(A, gg (R)/p") — Homeis(A, G(R)/Gayi—s(R)) — Homes (A, G(R) /G (R)).

Let us denote by ¢ the image of ¢ under hgy¢—~. Then by commutativity of the diagram,
¢ and pst¢—~ both define a lift of ps_, (i.e. the image of p, in the top right) along the top
right map. By Proposition A.3.2, these differ by a class ¢ in HL (A, 4(g5 (Reo)/p")), where
#(...) denotes the module with the A-action twisted by ¢: Explicitly, let b be any lift of b to
G/Gsit—~(Roo). Then there is a unique cocycle § : A — (g¢ (Reo)/p") such that

(18) bt p(1) b =8(7) - $(7) in G/Gisir(Roc)
under the identification g§ (Roo)/p' = Gs—~(Roo)/Gstt—(Roo). Since p = 1 mod p', we have
¢ = 1 mod pt. This shows that on the level of cohomology sets, we have

Heo (A, 4(99 (Roo) /1")) = Hegs (A, g5 (Roo) /DY)-

Therefore, we can again use (17), this time for ¢ = 1: The image of § in the cokernel of this
map is annihilated by p?. We deduce that after reducing the whole diagram mod p” once
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again, the cocycle § in the top left can be lifted to a class ¢’ in the bottom left. Explicitly,
this means that there is a € g¢ (Reo)/p' = Gs—24(Roo)/Gs+t—2(Roo) such that

§'(y)=a"t-0() yxsa=a"t6(v) - 6(y) e b(y)
defines a homomorphism ¢’ : A — G4_9(R)/Gs+i—2y(R). Then
¢'=0-0:A—= GR)/Gssi—2v(R)

is a homomorphism which also lifts ¢s_o, due to exactness of the bottom row, and whose
image ¢ 1= hsyi—o (@) is equivalent to psii—2, in HE (A, G/Gsit—2+(Rx)): Namely, we
can again be more explicit in terms of cocycles. By definition, we have for any v € A

&) =0(1) - 6(y) =a"t6(7) - 6(7) -7 a- 3(1) o) == (Ba)~t - p(7) - " (ba).

Note that bsts—2y = ba is still a lift of the image bs_2 of bin G/Gsyi—2+(Roo) as a is trivial
mod Gs_24(Rx). Using s+t — 2y = s + v, this shows that ¢, := ¢ defines a preimage of
Ps+~ under hgy, with the desired properties, completing the induction step.

In the limit s — oo, the ¢ : A — G(R)/Gs(R) define by Lemma 3.7 a homomorphism
¢ : A — G(R), and the by define an element b € G(R+,) such that

©(7) = b~ p()7*D.

This shows that p and ¢ define the same class in Hl (A, G(Rx)). Thus W¢(p) agrees with
the image of 2 in H, (X, ). This proves part 1 in the case that Q5¥° C K.

To deduce part 2, we run the above argument with p := ¢ and ¢ := 5. Inductively, we
then see that we may choose by € G(R)/G4(R): For the induction start ¢ = s this is clear.
In the induction step, we may then find a € g (R)/p!, and thus b € G(R)/G(R) such that
P1,s = '571802755 Again using Lemma 3.7, this defines in the limit s — oo the desired element
b € G(R). This finishes the proof in the case that K contains Q.

In the general case, we can argue in exactly the same way, but instead use the diagram

Hi (A g5 (RE9)/p') —— Hio (A, G/Gapa(RYS)) ——— Hi (A, G/Go(REF))

i i Tn

Hlo(A 9 (RY)/p") = Hlg(A, G(RY)/Gort(RY€)) — Hi (A, G(RY)/Gs(RY°)).
The map on the the left, and the map on obstruction classes in H?, have p”-torsion cokernel
by Lemma 2.21. The same inductive lifting procedure as in the cyclotomic case then shows
that we can lift p to an element ¢ € HL (A, G(RY®)). In fact, we can arrange for ¢ to be
in the image of the map sec of Lemma 2.22: As in the first part of the proof, we find a
lift ¢ of ¢s to the middle of the bottom row. In an additional step, we now apply sec ores
to this: Since in the induction start ¢ is trivial, and sec and res are functorial, this shows
inductively that secores(®) is also a lift of ¢s. Second, on HY (A, gd (RZC)/p!), the map
res is an isomorphism up to the p?-torsion kernel, which is a direct factor. We can therefore
reduce modulo p” once more to arrange that the difference ¢’ from the last proof is already
in the image of sec. This way we ensure inductively that ¢, is in the image of sec. O

We can now prove the next instance of Theorem 4.1, the case that G has good reduction:

Proposition 5.6. Let K be a perfectoid field over Q,. Let G' be a rigid group over K of good
reduction. Then for any smoothoid space X over K, the map Vg is surjective. If moreover
Qfgyc C K, then Vg is an isomorphism.
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Proof. We may work locally in X4 and assume that there is a toric chart f: X — T¢ x Y,
as well as ¢, € K. We then have the commutative diagram Proposition 5.3.

To see that W¢ is surjective, let * € H(X,G). Let k& € N and consider the subgroup
G C G from Proposition 3.6. By Proposition 3.12, every v-G-bundle on X admits a reduction
of structure group to Gy on some étale cover X’ — X. Going up the toric tower of X’ we
can for k > 0 arrange by Lemma 2.14.2 that k& > ¢ where c is the constant of Proposition 5.5
for X’. Now z is in the image of H!(X',G.) — H}(X',G). By Proposition 5.5.1, this implies
that = € im(Wy). It follows from Proposition 5.3 that z € im(¥¢).

To sce that Wg is injective, let 61,6, € (g @ Q)"=°(X) be such that Ug(0y) = W (6s).
By Proposition 5.3, we can pass to an étale cover X’ — X where we can lift these to homo-
morphisms 6,6, € Z*°(1). Then by commutativity, we have Wf(exp(@)vl)) = Wf(exp(gg)),
which by Proposition 5.5.2 implies that exp(bvl) and exp(bvg) are conjugated via G(X’). By
Lemma 3.5.3, it follows that already 61, 6, are conjugated via G(X'), thus so are 61,6,. O

Corollary 5.7. Let K be any perfectoid field over Q,. Let G be any rigid group over K.
Then Vg is surjective on any smoothoid space over K.

Proof. By Corollary 3.4, there is an open subgroup G° C G of good reduction. The diagram

Higgsgo —2% R'v,G°

! |

Higgs, Yo, R V.G

commutes by functoriality of ¥. By Proposition 3.12, the right vertical map is surjective.
The top morphism is surjective by Proposition 5.6. Thus the bottom map is surjective. [

5.5. Injectivity of W. Throughout this subsection, we assume that Qp'° C K and re-
tain the notation of Section 5.1, i.e. X = Spa(R, RT) is a toric smoothoid space with A-
torsor Xo, = Spa(Reo, RY) — X. In order to prove that ¥ is injective, we use the map
W;: Hom(A,U(R)) — HL (X, G(Rw)) from Section 5.1. Unravelling Definition A.1, we see
that we have the following:

Lemma 5.8. For any two py,pe: A — U(R) in 2°(G)(X), the following are equivalent:

(1) W(p1) = Wy(p2)
(2) There is A € G(Rx) such that

(19) p1(v) = A" pa(y) - AF A forally € A,

Equivalently, (19) expresses that there is an isomorphism between the G-torsors on X,
associated to p; and py. As we will explain in detail in the next section, the following
Proposition says that this can be translated into an isomorphism of G-Higgs bundles:

Proposition 5.9. Assume that there is A € G(Rw) such that (19) holds. Then A € G(R).

For G = GL,, this is the analogue of [Fal05, Lemma 1.(ii)] in our setting. However, our
argument is different to Faltings’, which uses the embedding of GL,, into the ambient ring
M,,, for which there is no analogue for general rigid groups G.

Proof. The proof consists of two steps: A “decompletion” showing that A € G(X,,) for some
subcover X, — X, — X, and then the descent further to G(X). We begin with the latter:

Claim 5.10. Assume that (19) holds with A € G(R,,) for some n € N. Then A € G(R).
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Proof. A is fixed by A, := p"A, hence p1(v*") = A1 - pa(y?") - A for all ¥ € A. Let
x = p1(y) and y := pa(7y). Consider the subgroups V := U(R) N AU(R)A™! C U(R) and
v = u(R) Nad(A ) (u(R)) C u(R), then the above equation shows that y?" € V. Let
moreover V' := U(R) N AT'U(R)A C U(R) and v’ := u(R) Nad(A)(u(R)) C u(R), then by
functoriality of the logarithm, we have a commutative diagram of bijections

% g—ATIgA V!

Iogl J}Og
b

ad(A) o

It follows that p” log(z) = log(zP") = log(A~'y?" A) = ad(A)(log(y?")) = p"ad(A)log(y) in
v’ C g(R), which implies log(z) = ad(A)(log(y)) in the K-vector space g(R). It follows from
this that we still have log z € v’. We can therefore reverse the calculation using exp,

z = exp(ad(4)(log(y))) = A7 -y - A.
Since x = A~1yy* A by assumption, this shows that y*A = A. It follows that A € G(R). O

Claim 5.11. If G has good reduction, there is ¢ > 0 depending on X such that for any
p1,p2: A = G(R) in Z**(G.)(X) and A € G(Rs) such that (19) holds, we have A € G(R).

Proof. By Proposition 5.5, we already know that for ¢ > 0, there is B € G(R) such that
p1(v) = B~ 'pyB. Replacing A by B~'A. We may therefore assume that p; = py =: p.

Consider G(R~ ) endowed with the action of A twisted by p in the sense of Definition A.2,
ie. v,z = p(y)y*zp(y)~!, we write this A-module as ,G(Ro). Then (19) can be expressed
as A€ H°(A, ,G(Rw)), and we wish to see that this is already in the image of

HY(A, ,G(R)) = HY(A, ,G(Roo)).-

This can be seen by the same argument as in Proposition 5.5 but in cohomological degree 0:

Let v be as in Lemma 2.14, then ¢ > t := 3y. We first observe that in G/G. = G.,
where p; becomes trivial, the image A, of A satisfies ’Y*ZC = A, and is thus contained in
G.(Rx)® = G.(R). By [Heu22a, Proposition 4.16], we may find an étale cover X’ — X on
which A, lifts to G(X’)/G.(X"). Moving up the toric tower of X', we may by Lemma 2.14.2
assume after replacing A by an open subgroup A, that ¢ also works for X’. Replacing X
by X', this first shows that A € G(X/), and then by Claim 5.10 that A € G(X') is already

A-invariant, thus A € G(X). We may therefore assume that A, lifts to G(X)/G.(X).

We now show inductively that for any s > ¢, the image A, of A in G, is A-invariant and
lifts to G(R)/Gs(R): If we know this for s, then by Proposition 3.6 we have exact sequences

0 - (pgar(ROO)/pt)A — (pG/Gs+t(R00))A — (ﬂG/GS(ROO))A — Hclts(A,pgg(Roo)/Pt)

Th,, Thsﬂ Ths Tht

0 = (o800 (R)/P))2 = (G(R)/Gasr(R)™ =+ (,G(R)/Gs(R))> — Hig(A, g5 (R)/p).

As the first and last vertical maps are isomorphisms up to p?-torsion by Lemma 2.14, the
same chase as in Proposition 5.5 shows that there is a preimage of Ay, o, under hy o,
that lifts to G(R). This shows that A € m G(X)/Gs(X) = G(X). O

We now return to the case of general G. To prove Proposition 5.9, it suffices by Claim 5.10
to prove that A is fixed by an open subgroup of A. For the proof, we may replace X by an étale
cover. Keeping this in mind, consider the image of A in G/U(R). By [Heu22a, Proposition
4.1], there is n € N such that this comes from G/U(R,,). After replacing X by an étale cover,
we can assume that this lifts to an element A4, € G(R,). Then A° := A- A;! € U(Rw).
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Consider p3(7) := Anp2(7)A, ! defined on the open subgroup A, C A that fixes R,, C Reo
On the level of Lie algebras we see that we can find a small rigid open subgroup H C U such
that A, H(Ruo)A,; ! CU(Rs). After increasing n to replace A by an open subgroup such that
p2 has image in H, we can therefore arrange for p3 to also be a continuous homomorphism
of the form ps: A — U(R,,). Then for any v € A,,,

p(7) = AT pa(7) A= AT AT ps () Ay -y A = AT py(7)y7 A°.
We now apply Claim 5.11 to p; and p3 to deduce that A° € U(R,,), hence A € G(R,). O

Proposition 5.12. Let K|Q5° be a perfectoid field. Let X be any smoothoid over K and let
G be any rigid group over K. Then Vg is injective.

Proof. We may assume that X is toric and choose a toric chart. We consider diagram (15):

Let 61,6, € (g ® ©)"=9(X) be such that W (1) = Ue(f). As in the last part of the
proof of Proposition 5.6, we can pass to an étale cover X " — X where we can lift these to
homomorphisms 1,65 in the top left, so that Wy (exp(@l)) Wf(exp(¢92)) inside H} (X', G).
By Lemma 5.8, there is A € G(Roo) such that exp(@l( )) = A=Y exp(fa(y))y* A. By Proposi-
tion 5.9, we have A € G(X'), so exp(fy) and exp(f) are conjugated via A. By Lemma 3.5.3
it follows that already 01, 02 are conjugated via G(X’), thus so are 61, 05. g

This finishes the proof the ¥ is an isomorphism if K contains Q7. One could prove the
case of non-cyclotomic perfectoid K directly with some more work, but what we have shown
so far is already enough to deduce this case by descent in the next section.

6. THE LOCAL p-ADIC SIMPSON CORRESPONDENCE FOR G

The technical work of the previous section also proves a new instance of Faltings’ “local
p-adic Simpson correspondence”: Via the identification of “generalised representations” with
v-vector bundles ([Heu22a, Proposition 2.6]), we can now generalise this from GL, to rigid
groups G and from rigid spaces to perfectoid families of such. For the formulation, we need a
notion of “smallness” on either side of the correspondence. In the setting of rigid groups, this
is not always intrinsic to GG. Rather, it depends on an integral structure on G: The choice of
a rigid open subgroup Gt C G of good reduction, which always exists by Corollary 3.4.

Example 6.1. For G = GL,, the canonical choice G = GL,,(O%) recovers the classical
setting of the local Simpson correspondence. More generally, there is a canonical choice for
G when G is the analytification of an algebraic group over K that extends to a group scheme
G over Ok: Namely, we can then take GT := G(O"), which is represented by the generic
fibre of the p-adic completion of G. This works for any split reductive groups.

Recall from Proposition 3.6 that given G, we get a canonical system of open subgroups
G; for k > 0, as well as the integral subgroups g; C g of the Lie algebra. By Proposition 3.3,
there is a > 0 such that for any k > «, we have an exponential map exp : g: = G;.

Definition 6.2. Let X be a toric smoothoid space and fix a toric chart f : X — T¢ x Y
(Definition 2.4). Let G be a rigid group and fix an open subgroup G* C G of good reduction.

(1) A v-G-bundle V on X, is called small (with respect to GT) if it admits a reduction
of structure group to G} for some ¢ such that Proposition 5.5 holds.

(2) A G-Higgs bundle (E,0) on X is called small (with respect to G1) if for some ¢ > «
such that Proposition 5.5 holds, there is a GT-torsor E* with an isomorphism F =

G <G E* with respect to which 6 is a section of the integral O -submodule

ad(E)* @0+ OF C ad(E) @0 O,
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where ad(E)* := g} x¢ E* C ad(E) is the O*-sublattice induced by E, and O C Q
is the locally free integral submodule induced by the chart f, see Definition 2.19.

For G = GL,, and GT := GL,(O™T), we also define a v-vector bundle V' to be small if it is
the change of fibre of a v-topological 1 + p*mM,,(O1)-bundle V, to GZ, i.e. V = GZ xC- V.

a’

By a small Higgs bundle, we then mean the change of fibre of a small Higgs bundle to GZ.

Lemma 6.3. Any small v-G-bundle on X, that is étale-locally trivial is already globally trivial
on X. In particular, the G-bundle underlying any small Higgs bundle is trivial.

Proof. By Proposition 5.5, any element z in the image of H}(X,G}) — H}(X,G) is in the
image of Wy. On the other hand, if z comes from H} (X,G), it is sent to 0 in R'v,.G(X),
thus the image under Wy : Z*(G.)(X) — R'v,G(X) is trivial. But the fibre over 0 of this
map is trivial by Proposition 5.3 and Corollary 6.12. Hence z = 0. O

Lemma 6.4. Any v-G-bundle V on X, becomes small on an étale cover of X.

Proof. By Proposition 3.12, we can after replacing X by an étale cover find a reduction of
structure group of V' to Gz for some k > «. This does not prove the lemma yet since passage
to an étale cover might change the required bound ¢, which depends on X. However, we now
can argue exactly as in the proof of [Heu22a, Lemma 2.30]: By Lemma 3.11, the v-G-bundle
V becomes trivial on Xoo — X. It therefore corresponds to a class [p] in Hl (A, G} (X))
Going up the toric tower, which does not change ¢ by Proposition 5.5, we can replace A by
an open subgroup that is sent into G} (X ) by p. g

Theorem 6.5 (Local p-adic Simpson correspondence for G-bundles in perfectoid families).
Let X be a toric smoothoid space over K and fiz a toric chart f : X — T4 xY (see Defini-
tion 2.4). Let G be a rigid group over K. Fix an open subgroup Gt C G of good reduction.
This induces a notion of smallness of G-bundles (see Definition 6.2).

(1) There is an equivalence of categories
LSy : {small G-bundles on X, } = {small G-Higgs bundles on X}

that is natural in G, but not in general independent of the chart f.
(2) In the case of G = GL,,, this extends to an exact equivalence of categories

{small vector bundles on X,} — {small Higgs bundles on X }.

(3) Let g: X' — X be any morphism of smoothoids with toric charts f of X and f' of X'.
Then any morphism of toric charts g : f' — f over g induces a natural equivalence

LS,
sma -ounates on —> 1Sma -111ggs ounates on 4
Il G-bundles on X!} —— Il G-Higgs bundles on X},

N N

| (] |
g — g* |
|

{small G-bundles on X, } i {small G-Higgs bundles on Xet}

where the vertical functors are defined only on the respective subcategories of small
objects with respect to X for which the pullback along g is small with respect to X'.

(4) Let V' be a small v-vector bundle on X, and let LS§(V) = (E,0). Then there is a
natural isomorphism R, (X, V) = Rlhiges(X, (E,0)) in D(O(X)). In particular, for
v: X, = Xe we get a natural isomorphism Rv,V = RTUhiges(E, 0) in D(Xe¢t).

Remark 6.6. (1) For functoriality in f in part 3, we use the notion of morphisms of toric
charts from Definition 2.4.2. We caution that for a given morphism X’ — X it is not
always possible to find charts f and f’ that admit a morphism of charts between them.
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(2) Our notion of “smallness” is more restrictive than that in other setups like [Fal05]
[AGT16] [Tsul8] [Wan23]. This seems necessary to treat general rigid groups G. We
discuss the precise comparison to these other works in Section 6.3.

(3) The last sentence in (3) is due to the fact that in general, g* may not preserve smallness,
as the implicit constant ¢ in Proposition 5.5 depends on X. However, in many concrete
situations of interest, g* does preserve smallness, for example when X = Y and ¢
describes some Galois action.

(4) For G = GL,,, apart from exactness, the difference between Theorem 6.5.(1) and (2) is
that in (2), we allow morphisms that are not necessarily isomorphisms, see Remark 3.9.

(5) Even if G is reductive and X is a rigid space, we do not see how this could simply be
deduced from G = GL,, by the Tannakian formalism, due to the smallness conditions.

(6) The cohomological comparison in Theorem 6.5.(4) is the generalisation to smoothoids
of results that are known for smooth rigid spaces at least in the arithmetic setup: For
Faltings local correspondence, this is due to Faltings [Fal05, p852], see also [AGT16,
IV]. Tt is also closely related to [LZ17, Theorem 2.1.(v)] and [MW22, Theorem 3.13]
which give analogous comparison results in the analytic setting over discretely valued
fields. Our proof of (4) follows a similar strategy. Apart from the different base field,
our result can be interpreted as giving a relative version for families of rigid spaces.

6.1. Proof of the local correspondence for general G.

Proof of Theorem 6.5. We first assume that QY C K, then the toric cover Xoo — X as-
sociated to f in Section 2.3 is an affinoid perfectoid A-torsor. In this setting, our technical
preparations so far allow us to essentially follow Faltings’ construction [Fal05, Theorem 3]:

We will define a functor LSJ?1 from right to left, and show that this is fully faithful and
essentially surjective. Let (E,6) be a small G-Higgs bundle and let ET C E be a reduction
of structure group to GF with respect to which 6 has coefficients in ad(E)™. As explained in
the beginning of Section 5, f can be written via Lemma 2.18 as a continuous homomorphism
p: A — ad(E)T(X) with commutative image. By Lemma 6.3 and Lemma 3.5, we can thus
apply exp to turn this into a continuous 1-cocycle exp(p) : A — Aut g+ (ET)(X). This defines
via Cartan-Leray a small v-G-bundle V, on X, that sends W € X, to

V(W) :={s € E(Xo xx W)|y-s=exp(—p(y))s for all v € A}.

(The sign in front of p(vy) is usually required due to our conventions on cocycles Definition A.1,
to make the cocycle condition translate into y17v2 - & = 75 exp(—p(12)) exp(—p(71))z. Here it
is of minor importance as p has commutative image). We now set LS~ (E, ) := V,,.

We note that E is a trivial G-bundle on X by Lemma 6.3, and V, is given by regarding
exp(p) as a descent datum for E along X, — X. In particular, V, becomes trivial on X.

We claim that this construction is functorial: A morphism of G-Higgs bundles (F1,6;) —
(Eq,603) is the same as a morphism of G-bundles ¢ : Fy — F5 such that for the homomor-
phisms p; : A — ad(FE1)T(X) and py : A — ad(Es) ™ (X) associated to 0y, 02 we have

(20) ¢ lm(e=pi(y) YreA.
By Lemma 3.5.3, it follows that inside E;(X), we have

(21) = exp(—p2(7))e = exp(—p1(7)) ¥y €A,

which implies that for any s € E(Xo xx W), we have 7 - ¢(s) = exp(—p2(7))p(s) for all
~v € A. This shows that the natural homomorphism ¢ : F1(Xoo Xx W) = Ea(Xoo xx W)
restricts to the desired map V,, (W) — V,,(W).

LS~! is essentially surjective: Let V be a small v-G-bundle on X. Then by Propo-
sition 5.5.1, we can find p : A — G} (X) such that the class of V in H}(X,G) is equal to
W;(p). Then the G-Higgs bundle (G, ) with 6 := log(p) is such that LS™1(G,0) 2 V.
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LS~ is fully faithful: Let (E1,6;) and (FE2,6;) be two small G-Higgs bundles on X.
By Lemma 6.3, we can find isomorphisms £y = G and F» = G. Let ¢ : V,, = V,, be any
morphism between the associated v-topological G-torsors. Since V), and V,, become trivial
on X, by construction, this is by descent the same as a A-invariant G-linear homomorphism
¢: V) (Xoo) =V, (Xoo). Choosing generators x and y on either side, this is a A-equivariant
homomorphism ¢ : G(X)r = G(Xoo)y. Let A-y be the image of 12 € G(Xs )z, then the
A-equivariance means that for all v € A, we have:

v-p(x) =p(y-xz) = " Aexp(—p2(7)) -y =exp(—p1(7))A-y
= Aexp(p2(7))v A7 =exp(p1(7))A

By Proposition 5.9, this implies A € G(X). We thus have (21) with ¢ = A, which again by
Lemma 3.5.3 is equivalent to (20), expressing that A defines a uniquely determined morphism
of Higgs bundles A : (Ey,61) — (F2,63). Hence LS™! is an equivalence.

Naturality in f and G: Naturality in G is clear. Functoriality in f can be seen exactly as
in Lemma 4.20: Any morphism g of toric charts between f’ and f as in Definition 2.4 induces
a morphism X/ — X, which is equivariant with respect to the induced map A’ — A
between the Galois groups. The pullback of G-Higgs bundles is then given by sending p to
P A = AL ad(ET)(X) — ad(ET)(X') and exp of this agrees with the cocycle

exp(p) : A = A 22 Aug . (E)(X) = Autgr (E1)(X).

Thus the pullback of V, along X’ — X agrees with V,, defined with respect to f’.

Part 2 can be seen exactly like part 1: We just need to replace (20) by the equation
p2(V)e = pp1(y) for all ¥ € A which is equivalent to exp(p2(7y))p = wexp(p1(7)), this time
by [Heu22a, Lemma 3.11]. Finally, exactness in part 2 follows from the case of parabolic
subgroups G C GL,,, and functoriality of the local correspondence in G.

This finishes the proof of Theorem 6.5.1 and 2.

We end this subsection with two remarks on globalisation:

Remark 6.7. One key difference between Theorem 4.1 and Theorem 6.5 is that the former
works for any smooth rigid space X, while the latter depends on a toric chart f : X — T¢.
For general smooth X, one might try to globalise the construction by choosing a cover by
affinoids that admit a toric chart. However, Theorem 6.5.3 says that it is only possible to
compare the equivalences on overlaps in a canonical way after the choice of a morphism of
toric charts. It is usually not possible to find these in a way that preserves gluing data.

This should not be regarded as a flaw of the local correspondence, but rather as a mean-
ingful conceptual barrier: In fact, the global correspondences of Faltings [Fal05], Abbes-Gros
and Tsuji [AGT16], Wang [Wan23] and others (see Section 6.3) all rely on an additional
choice, namely the choice of an Aj,¢/&2-lift of a semi-stable model of X. Second, they require
a stronger smallness condition than the one that works for the local correspondence.

Remark 6.8. In this light, it is interesting to ask to what extent it is possible to generalise
Theorem 6.5 to a more general class of perfectoid Galois covers, thus allowing better gluing
properties in some special cases. We will therefore now sketch how one can use the more
general preparations from Section 4 to generalise the local correspondence by axiomatising
the class of Galois covers for which the proof still goes through. We will apply this in [HWZ23]
to prove a small p-adic Simpson correspondence for G-torsors on abeloid varieties.

As in §4.2, let X be an affinoid smoothoid adic space over a perfectoid field K containing
Q¢ and let

f: X =Spa(Re, RL) — X = Spa(R, R")

be a pro-étale affinoid perfectoid cover. We suppose that f satisfies the following axioms:
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(1) fis a pro-finite-étale Galois cover, and the Galois group A is a finite free Z,-module.
(2) There is v > 0 such that for any s € N and ¢ € {0,1,2}, the kernel and cokernel of

Hl (AR /p®) — HL (A, RY /p%)

cts (e'e}

are killed by p”. Moreover, the same is true for Hi (A, RT) — Hi (A, RL).
Note that (1) and (2) imply that A =2 Z¢ where d is the smooth dimension of Definition 2.11.

Part (2) replaces Lemma 2.14.3. The case of ¢ = 1 implies that the Cartan-Leray map of f

Homes (A, O(R)) = HA (A, O(Rs)) = HA(X,0) 25 HO(X, Q1)

cts

is an isomorphism: Indeed, the second map is an isomorphism because H, 5()? ,0) =0 due to
the assumption that X is affinoid perfectoid, and the map HT is an isomorphism because X
is affinoid. We can thus deduce from (2) the analogue of Lemma 2.18 in this setting.

Then the analogue of Proposition 5.5 holds for f, namely the exact same proof goes through
with ¢ := 5v by replacing Lemma 2.14 with axiom (2). We can use this to define a notion of
smallness as in Definition 6.2. However, we will have to slightly modify ¢ further:

We also require an analogue of Proposition 5.9 for f, but for this we need to be slightly
more careful. The proof of this goes through verbatim except for the step in Claim 5.11 where
Lemma 2.14.2 is invoked, for which we do not have a direct analogue for f. However, this step
of the proof can still be generalised with some more work, by replacing the étale localisation
argument with a lifting argument at the expense of increasing c:

In the notation of the proof, we need to show that A. € G/G.(X) lifts to G(X). The
obstruction to lifting defines a class in H}(X,G.). We claim that this class vanishes if we
replace U = G, in Claim 5.11 by U := Ga.. Indeed, if p;, pa factor through Ga.(R), then we
already have As. € G/G2.(X) and the lifting obstruction thus lies in the image of a map

h:HNX,Ga) = HN(X,G.).

It thus suffices to see that h = 1. But this follows from Lemma 6.3: Unravelling the definitions,
we see that for the group G’ := G, a v-G’-bundle on X is small if it admits a reduction of
structure group to G’, = Ga.. Hence h = 1, so A, lifts uniquely to G(X)/G.(X) as desired.
From here the proof of Proposition 5.9 goes through without further changes.
Adapting the notion of smallness accordingly, so that a v-G-bundle is small if it admits a
reduction of structure group to Ga., it follows that also Lemma 6.3 holds in this setting.
With these results at hand, the construction of the functor

LSy : {small G-bundles on X, } — {small G-Higgs bundles on X¢}

now goes through verbatim: Indeed, the first part of the proof of Theorem 6.5 work in the
same way using the analogue of Lemma 6.3. The proof of essential surjectivity works verbatim
using the analogue of Proposition 5.5, and the proof of fully faithfulness works verbatim using
the analogue of Proposition 5.9.

All in all, this shows that we get a more general version of part 1, 2, 3 of Theorem 6.5 for
not necessarily toric covers X — X satisfying axioms (1) and (2), but at the expense of a more
restrictive smallness assumption (defined in terms of 2c¢ instead of ¢, where ¢ = 5v). In some
special cases where one has global perfectoid covers, this allows for better globalisation than
one has for toric charts. That being said, the cohomological correspondence, Theorem 6.5.4,
will require more input specific to toric charts. This is our next goal.

6.2. Cohomology of v-vector bundles. Continuing the proof of Theorem 6.5, we now
move on to part 4. For this the main computation is a more general version of part of
Lemma 2.14 (which was in turn based on [Sch13a, Lemma 5.5]), describing the v-cohomology
of small v-vector bundles, Lemma 2.14 being the case of the trivial bundle O. As before, we
write X = Spa(R, R") and X, = Spa(Rs, RL).
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Lemma 6.9. Let p: A — GL,(R") be a continuous representation such that p =1 mod p®.
Let either M := R™™ or M := R*"/p¥ for some k € N, endowed with A-action via p. Endow
M ®g+ RL with the diagonal A-action and consider for any m > 0 the natural map

H (A, M) — HE(A, M ®p+ RL).

cts cts

Then we can find ¢ > 0 independent of k such that the kernel and cokernel of this map are
annihilated by p¢. For m =0 and M = R™, the map is an isomorphism.

Remark 6.10. For m = 0, this give an alternative proof of Proposition 5.9 for G = GL,,, by
setting M = End(p1, p2). This is essentially Faltings’ original proof in [Fal05, Lemma 1].

Proof. We use Lemma 2.14 and its notation: As RT®4+AX — RZL is injective with p’-
torsion cokernel, it suffices to see the statement with Rt — RZI replaced by AT — A% . For
m = 0 we then get upon inverting p an isomorphism M2 @+ R = (M ®@p+ ROO)A7 and using
that RT™ = R N R, we see that it is already an isomorphism before inverting p.

By a limit argument, it thus suffices to prove the statement for M/p* for any k € N. Here
we can argue as in [Fal02, p205-206]: Fix a compatible system of p-power roots of unity (.
Write 71, ...,74 for the induced generators of A = Zg. We then have a decomposition

M @4+ AL /" = T (M/p") - Tt ... T
i=(i1, i) €00, )2 (2]

as a A-module, where (M/p*)-T{* - - Ty is the R*-module M /p* with the action of p twisted
by the character y; ~ ¢%. It thus suffices to prove that already HZ (A, (M/pF) - Tt .- T5)
is p®-torsion unless ¢ = 0. Via the inflation-restriction sequence and Lemma A.5, we can
reduce to Z,-cohomology. We are thus left to describe RIcs(Z,, M/p*) with 1 € Z, acting
as multiplication by (?p(v;) on M/p*. By Lemma A.5, this is computed by the complex

O%M/pk%M/p — 0.

By assumption we have p(vy;) = 1+ p®A for some A € M,,(R"), so ({‘p(y;) —1)/(¢F —1) is
a unit for i # 0. Hence the above map has the same kernel and cokernel as ¢ — 1. O

Lemma 6.11. Let p: A — GL,,(R") be a continuous representation such that p = 1 mod p®.
Let M := R"™ endowed with A-action via p. Then for E := M ®O and 0 := log(p) interpreted
as a section of M, ® Q0 as in Section 6.1, there is a natural isomorphism

RU¢4s(A, M) =5 Rlpiges(X, (E,0)).

Proof. Let v1,...,7a € A be topological generators and let Aj,..., Aq be the images of
1, -.,7q under 6. Via Hom(A, O(X)) = Q(X), the dual basis of v induces a basis d1,. .., dq
of Q(X) and thus an isomorphism Q(X) = R?. The Higgs complex now evaluates on X to

Cﬂiggs:[M_>M®RRd_>M®R/\2Rd_>-~-—)M®R/\de]

where the k-th transition map sends m ® e;; A+~ Aey = 32, Aj(m) @ ey A--- Aey, Aej
Comparing the complex Cfjyq to Cg,, from Lemma A.5, we see that both have the same
terms, but different transition maps. We claim that there is an R-linear isomorphism u :

Carp = Ciiiggs- For this we first observe that inside Endg(M), when we identify v; with its
(=n**

image under p, then A;/(y; —1) = u; =1+ (v; — 1) Y 0_, —— (v — 1)*"* € Endr(M)
is invertible as ; — 1 is topologically nilpotent in Endg(M). Writing each term in Cg,, as

M ®p AFR? = ®i1<~--<ik M e N+ Ae;,, we now define u on each direct summand as

w:M-ey N Neg, = M -ejg Ao Neg, M Uy e U M.

This gives an isomorphism of complexes as the 7; and A; all commute with each other. [
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In summary, we obtain for the v-vector bundle V' natural isomorphisms in D(R)
RT,(X,V) = RT¢s(A, V(X)) = RTcts(A, M) = Rl Higes (X, (E,0))

where the first morphism comes from the Cartan—Leray sequence [Heu22b, Proposition 2.8].
This finishes the proof of Theorem 6.5 in the case that K contains QY.

It remains to deduce the general case by Galois descent. For this we use the following:

Corollary 6.12. For any perfectoid field K, any smoothoid X over K and any rigid group
G over K, the morphism V¢ has trivial fibre over the trivial element.

Proof. Let X/ — X be the base-change to a completed algebraic closure of K. The diagram

Higgsq (X k) Ye, R, G(Xg)

[ I

Higgs,(X) — Yo , Ry, G(X)

commutes by Proposition 4.22. The top morphism is injective by Proposition 5.12. The left
map has trivial kernel by Lemma 3.20. Hence the bottom map has trivial kernel. 0

Corollary 6.13. Let X be a smoothoid space over K. Let K'|K be any extension of perfectoid
fields. Then we have v-descent of étale G-torsors along the base-change map Xg — X.

Proof. Any descent datum for an étale G-torsor along the morphism X g+ — X defines a v-G-
bundle V on X that becomes trivial on Xx-. This is étale if its class in R'v,G(X) vanishes.
This follows by chasing the above diagram using that W is surjective by Proposition 5.6. [

Let C be the completion of the cyclotomic extension of K obtained by adjoining all p-power
roots. By almost purity, this is again a perfectoid field. Let G = Gal(C|K) be the Galois
group. Let fo: Xo — ']I‘dc x Y be the base-change of f from K to C.

Let now V be a G-torsor on X,. Let Vi be the pullback to X and let (E,0) be the
Higgs bundle associated to V¢ via the local correspondence LS with respect to fo. Then
by functoriality in the toric chart, the v-descent datum for Vi along X¢ — X induces a
descent datum on (F,0) for Xc — X. By Corollary 6.13, this is effective and thus defines a
Higgs bundle on X. The functoriality of this construction and all desired compatibilities now
follow from those for the correspondence on X using that the functor from étale G-torsors
to v-G-torsors is fully faithful by Lemma 3.10, and thus morphisms can be defined v-locally.

Similarly, it suffices to check that the morphism between cohomologies in part 3 is an
isomorphism after an extension of base-field. This completes the proof in general. O

The construction of Theorem 6.5 is clearly compatible with that of Theorem 4.1, in the
sense that after passing to isomorphism classes and sheafifying on X, the functor LS com-
putes the map W. This completes the last missing piece of the proof of Theorem 4.1: The
above descent shows that W is an isomorphism over general perfectoid base fields. (|

6.3. Relation to Faltings’ local p-adic Simpson correspondence. We now elaborate
on the comparison of our correspondence in the case of smooth rigid spaces and G = GL,, to
Faltings’ local correspondence as studied by Abbes—Gros—Tsuji.

The idea to build a global p-adic Simpson correspondence out of local correspondences
between small objects goes back to [Fal05], and instances of such a correspondence for G =
GL,, are now known in good generality: For example, it is known for a certain class of log
schemes defined over discretely valued k due to Faltings [Fal05], Abbes-Gros [AGT16] and
completed by Tsuji [Tsul8], as well as in cases of good reduction, due to Wang [Wan23]. Let
us also mention in this context the “g-deformed” version due to Morrow—Tsuji [MT21].
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The first difference of these to our version is the technical setup in which the correspon-
dence is formulated: The approach of Faltings/Abbes—Gros/Tsuji is rooted in the setting of
Faltings’ p-adic Hodge theory, and deals with certain log schemes with toroidal singularities,
defined over discretely valued base fields k. On these one defines the category of generalised
representations, and the local correspondence then essentially happens after the base change
to the completed algebraic closure K of k. Let us refer to this as the “arithmetic” setup.

An alternative technical foundation (of course inspired by Faltings’) is that of Scholze’s p-
adic Hodge theory [Sch13a], which instead works with smooth rigid spaces X over algebraically
closed K. For the Hodge-Tate comparison (on which the p-adic Simpson correspondence is
based), this is possible without assuming that X admits a model over a discretely valued
field. One then uses locally perfectoid constructions, like the pro-étale site, or the category of
diamonds, which allow one to reinterpret generalised representations as locally free sheaves
on X. Let us call this the “geometric” setup.

In many situations, it is possible to pass from the “arithmetic setup” in the above sense to
the “geometric setup” by analytifying and passing from k to K. This is not to say that one
setup is more general than the other, for example Faltings’ setting allows for more flexibility
in the regularity conditions imposed on X. Moreover, there are of course many variations in
between, for example many authors use Scholze’s technical language but work with varieties
that allow models over discretely valued fields, for various good reasons: For example on can
then expect a “de Rham” side to the non-abelian picture, as in [LZ17].

The second difference is that we use a different notion of smallness, related to the difference
between [AGT16, Definition 13.1 vs 13.2]: In terms of generalised representations, the def-
inition used by Faltings/Abbes—Gros/Tsuji is that the underlying module is projective and
generated by elements on which the action becomes trivial modp®, whereas the definition
that we use here is that the module is already finite free with trivial action modp®.

The proof of the local Simpson correspondence for G = GL,, in Faltings’ setting is quite
subtle, as explored in detail by Abbes—Gros—Tsuji (see in particular [AGT16, I1.14], [Tsul8,
Remark 2.3]). The major difficulty is that when using their notion of smallness, the con-
struction requires an additional technical result, which in the language of Abbes—Gros is that
“small representations are Dolbeault”. This was the missing piece provided by [Tsul8]. We
choose to sidestep these problems by way of our more restrictive notion of smallness, which
also seems more natural in our general setting of G-torsors.

If we ignore all of these technical differences, the main novelty in Theorem 6.5 is of course
the generalisation from GL,, to rigid groups G and from smooth rigid spaces X to the relative
setting of perfectoid families thereof. A minor additional point is the generalisation from
algebraically closed K to any perfectoid base field over Q,,.

6.4. Relation between sheafified and local correspondence. One could in principle
deduce a weaker version of Theorem 4.1 from Theorem 6.5 by passing to isomorphism classes,
using that G-bundles and G-Higgs bundles are étale-locally small. But it is important for our
purposes that Theorem 4.1 is stronger than this version, as it is “more canonical and more
functorial in X7 in the following ways:

Dependence on the chart: As mentioned in the introduction, in contrast to the complex
case, the p-adic Simpson correspondence is in general non-canonical and will depend on certain
choices. The situation for the local p-adic Simpson correspondence is slightly better, but still
quite subtle: It still depends on the choice of chart up to non-canonical isomorphism (see also
[Tsul8, Remark 13.3]). This means that it is in general not clear how to globalize from the
local case, since one has no canonical glueing data on overlaps. Other versions of the local
correspondence have similar restrictions. Indeed, there are conceptual reasons why one cannot
expect a completely canonical correspondence in general: If this existed, then by functoriality
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one would be able to glue the local correspondences to get a global correspondence without
any smallness assumptions, which is known not to exist.

In contrast, the advantage of the “sheafified correspondence” of Theorem 4.1 is that it
is completely canonical and functorial with respect to localisation. In particular, the local
correspondence, Theorem 4.1 holds for any smooth rigid space. This functoriality is crucial
for our purposes in this article, and especially for constructing the Hitchin morphism H.

Functoriality: Given a morphism of smoothoids h : X; — X5, it is not always possible

to find compatible toric charts, and hence to compare the local correspondences, even étale
locally. The functoriality property of Theorem 4.1 is stronger and includes such morphisms.

Smallness: A third way in which Theorem 4.1 is more canonical than Theorem 6.5 is that
for general rigid groups G, there is no canonical notion of “smallness” of G-torsors.

7. APPLICATIONS TO v-VECTOR BUNDLES ON RIGID SPACES

We now give several immediate applications of Theorem 4.1 and Theorem 6.5. Let G be
any rigid group. Our first application is that the explicit description of R'v,G lets us deduce
v-descent criteria for G-torsors. By this we mean methods to answer the following question:

Question 7.1. Let f: X’ — X be a v-cover of smoothoid (e.g. smooth rigid or perfectoid)
spaces. What are conditions on f that ensure descent of étale G-torsors along f7

As it is tautological that we have descent of v-G-torsors along f, it is equivalent to ask
how we can tell whether v-G-torsors on X are already étale-locally trivial.

Examples of situations where this question arises include moduli stacks of étale vector
bundles, but also the study of automorphic sheaves like bundles of overconvergent p-adic
modular forms defined via descent from perfectoid Shimura varieties of infinite level.

7.1. Criteria for v-vector bundles to be étale-locally trivial. Since Question 7.1 is
étale-local, we can use either of Theorem 4.1 and Theorem 6.5 to study it. We shall mainly
use the former as it is slightly more convenient in this setting, e.g. it does not require additional
choices. We begin with the following immediate consequence:

Corollary 7.2. For any smoothoid space X and a rigid group G over K, the Leray sequence
forv: X, — Xg induces an ezxact sequences of pointed sets, functorial in X and G,

1 — HL(X,G) — H(X,G) — Higgsg(X).
We deduce the following criterion for v-descent, a generalisation of [Heu22b, Corollary 1.5]:

Corollary 7.3. Let V be a G-torsor on X,,. Let U — X be any étale map with Zariski-dense
image. Then V is étale, i.e. comes from a G-torsor on Xe, if and only if V|y is.

In particular, if X is connected, this means that to prove that V is étale on X, it suffices
to prove this on any non-empty open subspace U C X. This is a priori quite surprising.

Proof. By functoriality in Theorem 4.1, the restriction to U fits into a commutative diagram
1 —— Hg(X,G) — Hy(X,G) — Higgsq(X)
1 —— H(U,G) —— H,(U,G) — Higgs(U).

Thus it suffices to see that the restriction map on the right has trivial kernel. This is precisely
the statement of Lemma 3.20 applied in the case of Example 3.21.1. g

We also get the following v-descent criterion, giving a satisfactory answer to Question 7.1:
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Corollary 7.4. Let f : X' — X be a v-cover of affinoid smoothoid spaces. Then descent of
étale G-torsors along f is effective if and only if f*: HY(X,Qx) — HY(X',Qx/) is injective.

Proof. Any descent datum for an étale G-torsor F along f defines a v-topological G-torsor
on X whose pullback to X’ is E. The result thus follows from a similar diagram as in the
proof of Corollary 7.3, again using Lemma 3.20: Here by Proposition 2.9, the sheaf Ox is a
vector bundle, so Qx — f*ﬁ x is injective if and only if it is injective on global sections. [

This generalises Corollary 6.13, where f is a base-change X — Xg. Another case is:

Corollary 7.5. Let X be a smooth rigid space, let Y be a perfectoid space, and let Z — X XY
be étale. Then a G-torsor on Z, is étale if it is after pullback to a perfectoid v-cover Y’ —Y .

Applying the same argument as in Corollary 7.3 to the case of Example 3.21.2 shows:

Corollary 7.6. Let G — G be an injective homomorphism of rigid groups. Let V be a
G-torsor on X,,. Then V is étale-locally trivial if and only if the G'-torsor V. x& G’ is.

As a special case of the Corollary is the map GL,,(O") < GL,,(0O), for which this shows:
Corollary 7.7. Let E* be a finite v-locally free OF -module on Z, such that E := E“‘[%] is
étale-locally free. Then ET is étale-locally free.

However, Example 3.19 shows that the map R'v,G — R'v, G’ is not in general injective.

Remark 7.8. Another application of Corollary 7.6 shows that for a linear algebraic group
G with embedding G — GL,, a G-torsor V on X, is étale-locally trivial if and only if the
associated v-vector bundle GL,, x¢ V is. The more general question whether two G-torsors
V1, Vo on X, are étale-locally isomorphic if the associated v-vector bundles are isomorphic
for every representation of G is more subtle, and Theorem 4.1 translates this into a question
about simultaneous conjugation that is related to Steinberg’s conjugacy conjecture [Ste78].

We finish with two results about v-vector bundles, generalising [Heu22b, Corollary 3.6]:

Corollary 7.9. Let V7 — V5 be an injective morphism of v-vector bundles on a smoothoid
space Z. If Vy is étale-locally free, then so is V.

Proof. We can work locally and assume that V;, V5 are small. Then Theorem 6.5 translates
this into an inclusion of Higgs bundles (E1,61) C (E2,02), and 67 vanishes if 05 does. O

Second, as a consequence of Theorem 6.5.3, we immediately see on the Higgs side:

Corollary 7.10. Let X be a smoothoid space over K and let V' be a v-vector bundle on X.
Let v : X, = Xg be the natural morphism of sites and let n € N.

(1) The Ox-module R"v.V wvanishes for n > dim X .
(2) If X is a smooth rigid space, then the Ox-module R"v,V on Xg is coherent.

This reproves a result of Kedlaya—Liu [KL16, Theorem 8.6.2.(a)] for pseudo-coherent mod-
ules in the special case of v-vector bundles. For paracompact rigid X, it follows from
Grothendieck vanishing [dJvdP96, Corollary 2.5.10] that HE(X,V) = 0 for i > 2dim X.
A related result has been obtained in a similar way by Min-Wang [MW22, Corollary 1.10]
for proper X over a discretely valued field K. We note that the Corollary also illustrates the
failure of Rv, to be conservative: If the associated Higgs complex is exact, then R,V = 0.
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7.2. v-stacks of étale G-torsors. Let f: X — Spa(K) be a smooth rigid space over X. As
an application of Corollary 7.5, we can now prove that the prestack of étale vector bundles
on X relatively over the v-site over K is a stack. This is one of our main motivations for
introducing smoothoid spaces.

We shall freely use the language of v-stacks from [Sch22, §9]. We now recall their definition,
adapted to our setting of perfectoid spaces over a fixed perfectoid field K. In other words,
we will always consider v-stacks with a fixed structure map to Spd(K):

Definition 7.11. (1) A prestack over K is a contravariant functor F' : Perf x — Groupoids.
(2) A prestack F' is called a v-stack if it satisfies v-descent, i.e. if for each v-cover Y’ — Y
with projections 71,73 : Y’ xy Y’ — Y, the following functor is an equivalence:

F(Y) = {(s,a)|s € F(Y'),a: 7js = mss such that cocycle condition holds}

(3) A v-stack F is called small if there is a surjection h : S — F from a perfectoid space for
which R = S xS is a small v-sheaf, i.e. there is a surjection S’ — R of v-sheaves from
a perfectoid space S’. It is not difficult to see that one gets an equivalent definition if
S and S’ are just assumed to be diamonds.

Definition 7.12. Let G be any rigid group over K, for example G = GL,,.

(1) We denote by Pung,, the prestack on Perfy that sends a perfectoid space Y to the
groupoid of v-G-bundles on (X xY),,, where as usual the fibre product is over Spa(K).

(2) We denote by Bung ¢ the prestack on Perfx that sends a perfectoid space Y to the
groupoid of étale G-bundles on (X x Y)gt.

(3) We denote by #%iggs. the prestack on Perfg that sends a perfectoid space Y to the
groupoid of G-Higgs bundles on (X X Y)g.

We now use the descent criteria from the last section to prove our next main result:
Theorem 7.13. All of the prestacks Bung ., Bung s and Higgsq are small v-stacks.

Proof. Let g : Y' — Y be a v-cover in Perfg, then X x Y’ — X x Y is also a v-cover. We
clearly have v-descent for v-topological G-bundles, so Bung . is a v-stack.

For Bung ¢, we need to prove that we have descent of étale G-bundles along the map
f: XxY — X xY. By Corollary 7.4 to Theorem 4.1, it suffices to see that the map
Q(X xY) — Q(X x Y’) is injective. This follows from Proposition 2.9 which shows Qx xy =
ﬁX ®ox Oy, and the fact that g.Oy — Oy is injective as g is a v-cover.

The case of Jiggs; now follows easily: Given a descent datum on a G-Higgs bundle
(E',0'), we first descend the étale bundle E’ to a G-bundle E. Then F = ad(E) ® Qx, being
an étale vector bundle by Proposition 2.9, satisfies v,v*F = F. In other words, F already
satisfies the sheaf property for the v-topology on Perfx, so # can be defined v-locally. By the
same argument, the vanishing of the section 8 A 6 € ad(E) ® Q2 can be checked v-locally.

That the v-stack Bung ¢ is small can be seen similarly as in [FS21, Proposition III.1.3]:
As explained there, it suffices to prove that for any affinoid perfectoid space S = Spa(R, R™)
over K, we have

%unaét(S’) = @ie[ %ung,ét(si)
where S; = Spa(R;, Rj") and (R;)ic; ranges through the topologically countably generated
perfectoid subalgebras of R. To see that this holds, let E C Pung ¢, (R) be any étale G-
torsor, and let U — X x S be a trivialising standard-étale cover so that G corresponds to
a class in the kernel of G(U) - G(U xxxs U). Note that U descends to a standard-étale
cover U; — X x S; for any 4 > 0. Then O(U) = li_n}O(Ui) since any function of U can be
presented using countably many functions of R which are thus already contained in some R;.
After refining U, we may assume that U is a finite disjoint union of affinoid opens that factor
through an affinoid open Spa(A, A™) C G of topologically finite presentation, so that F is
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already in the image of lim G(U;) — I&HG( ). As hAlG(U Xxxs U;) = GU xxxs U) is
injective, it follows that ﬁ descends to a G-torsor F; on X x S; for i > 0, as desired.

The same approximation arguments show that ad(E)®@Q(X x S) = lim ad(E YRQUX x S;),
so that any Higgs field 6 on E already descends to a Higgs field on E; for ¢ > 0. Thus

Higgsq 6 (S) = lim, _ Higgsg e (i),

which shows that .7%iggs; is small. We deduce the case of Bung ,, from this using Theorem 6.5:
Let V be a v-G-bundle on X x S. By Lemma 6.4, this becomes small after passing to an étale
cover of X by toric affinoid subspaces U — X. By functoriality of the local correspondence
in the toric chart, we deduce that the restriction of V to U x S descends to some U X S;.
Since morphisms of Higgs bundles also descend from U x S to some U x S;, we see that we
can descend the gluing data, and deduce that V' descends to some X x S;. O

While we believe that the v-stack ZBung ¢ is of independent interest, its role in the following
is that we use it to understand J#iggs,. For example, for commutative G we have:

Lemma 7.14. Let G be a commutative rigid group. Let X be a proper smooth rigid space.
Then we have a canonical isomorphism of v-stacks on Perf i

Higgsq = Bung g, % HO(X,g ® QX) QK Gg,

where the second factor on the right hand side is a Tigid vector group. In particular, all of
Bung ¢, Bung,, and Higgsq then have the structure of a group v-stack.

Proof. In the proper case, we have H°(X x Y,(NZ) = HY(X, ﬁ) ® O(Y) by [Heu2la, Propo-
sition 4.1]. The description therefore follows from Remark 3.16. The group structure on
PBung ¢ and Bung ,, comes from the tensor product on the category of G-bundles given by
sending G-torsors F1, F5 to the pushout of F; X Fy along the multiplication G x G — G. [

A similar description is still possible if we drop the assumption that X is proper. In this
case, the second factor might no longer be a rigid group, but it is still a diamond:

Lemma 7.15. Let f : X — Spa(K) be a smooth rigid space. Let E be an analytic vector
bundle on X. Then the v-sheaf f.E on Perfx defined by Y — E(X X Y) is a diamond.

Proof. Let us write Fx g := f.E. Given any cover X = UU;, the map Fx g — [[Fu, £ is
injective, where Fy, g is the restriction to U; . By [Sch22, Proposition 11.10], we can thus
work locally on X and assume that E is free, reducing to £ = O. By a result of Achinger, we
can moreover assume that X admits a finite étale map X — I to some rigid polydisc [Achl17,
Proposition 6.6.1][Zav21, Corollary B.5]. In this case, O(X xY) = O(D x Y) ®pm) O(X),
so we are reduced to the case that X = Spa(K(Ty,...,Ty)). In this case, the result follows
because Fop C [[yA”, and the latter is a diamond by [Sch22, Lemma 11.22]. O

8. THE HITCHIN MORPHISM FOR v-VECTOR BUNDLES

We now give the second main application of the sheafified correspondence Theorem 4.1:
The construction of the Hitchin morphism on the Betti side. To motivate the construction,
we reiterate that our goal in this series is to investigate to what extent non-abelian p-adic
Hodge theory can be understood in terms of a comparison of the moduli v-stacks introduced
in the last section. As in the complex theory, it is clear from the case of G = G,, which
we explain in detail in §8.5 that we cannot expect J#%ggs; and Punc , to be isomorphic as
v-stacks. Instead, as mentioned in Theorem 1.7 in the introduction, what we will show in
part IT is that for G = GL,, and X a smooth proper curve, the two v-stacks are twists of each
other via two natural morphisms to the same rigid analytic base: the Hitchin base.
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The goal of this section is to introduce these morphisms and prove some first properties.
We also explain why we believe that the Hitchin morphism on the Betti side is interesting for
studying representations of the étale fundamental group.

As before, let K be any perfectoid extension of @QQ,. Throughout this section, let X be a
smooth rigid space over K. We discuss the the Hitchin morphisms on the Higgs side.

8.1. The Hitchin morphism for Higgs bundles in the case of G = GL,,. We describe
the Hitchin morphism for G = GL, because this is the main case studied in the p-adic
Simpson correspondence so far, and the description simplifies significantly in this case. To
simplify notation, let us in this subsection write

PBuny, » = BungL, v, 995, = ,%”z'ggsGLn.

In algebraic geometry, the Hitchin morphism for a smooth proper variety Y is a morphism
from the stack of Higgs bundles of Y to the Hitchin base, which is a certain affine space
depending on Y [Sim94, cf §6]. The construction is straightforward to adapt to the p-adic
analytic setting, as we now discuss, roughly following [Sim94, p.20].

Let Z be any smoothoid space and let (E, #) be a Higgs bundle of rank n on Zs. We regard
6 as a section of End(F) Q. On any U € Zg where E becomes trivial, choose an isomorphism
¢ : Ely = OF, then 0 defines a homogeneous element of degree 1 in M, (H°(U, SymQ)) and
we can consider its characteristic polynomial in HO(U, Sym Q[T1). As this is independent of
the choice of 1, this glues to a polynomial

Xgo=T"+aT" "+ +a, € H(Z,SymQ[T])
defined over all of Z, where a3, € H%(Z, Sym” Q) fork=1,...,n.

Definition 8.1. Since xg ¢ only depends on the isomorphism class of (E,#), this defines a
natural map from the set of isomorphism classes of Higgs bundles on Zg of rank n

H : {Higgs bundles on Zg; of rank n}/~— @ H(Z,Sym*Q), (E,0) — xg..
k=1
As H is functorial in Z by construction, it induces a morphism of sheaves on Zg;

(22) hy : Higgs, — @ Sym” Q.
k=1
Remark 8.2. If dim Z = 1, then Sym’ Q = Q% and we get a simpler description of xg.g.
For this we consider for each k = 1,...,n the k-th wedge product of the Higgs field
AfONPE = AR(E @ Q) = AFE @ QFF,
then ay, := tr(AF0) is the k-th coefficient of y g 9. This matches Hitchin’s definition [Hit87].

We now return to the smooth rigid space X, for which we can assemble the various maps
hz on Z =X xY for Y € Perfi to a Hitchin morphism in terms of moduli stacks, using:

Definition 8.3. The Hitchin base of X is the v-sheaf A,, = Ax , on Perfx defined by
Ap: Y — @ HOX x Y, Sym* Qxy).
k=1
In general, A, is a diamond by Lemma 7.15, but if X is proper, then by Proposition 2.9 and
Lemma 8.4 below, A, is represented by the rigid space @, _, H°(X, Sym” 0) @k Gy.

Lemma 8.4. Let X be a smooth proper rigid space and let Y be a perfectoid space. Let
m: X XY — X be the projection. Then for any vector bundle E on X¢ and i > 0, we have

H (X xY,m*E) = H. (X, E) @k O(Y).
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Proof. This follows from a smoothoid version of “cohomology and base change”, or by a direct
computation in Cech-cohomology as in [Heu2la, Proposition 3.31]. O

Definition 8.5. Using the small v-stack of Higgs bundles .7#%ggs,, from Theorem 7.13, we
define a morphism of v-stacks over K, the Hitchin morphism for GL,,

(23) H : Higgs, — An

as follows: We compose the map #%ggs, (X) — Higgs,, (X x Y), given by passing to isomor-
phism classes and sheafifying on (X x Y')g, with the map hz from (22).

Remark 8.6. We think of elements (a1, ...,a,) € A, of the Hitchin base as monic polyno-
mials f(T) =T" +a;T" ' +--- + a,. For example, this defines a natural map of v-sheaves

A X A = A, f(T)ag(T)'_)(fg)(T)
The image of a direct sum of Higgs bundles F1 & Fy under H is then H(E,) - H(Es).

8.2. The Hitchin morphism for general G. We now describe the construction of the
Hitchin morphism for general rigid groups G. Again, this is a fairly straightforward adaptation
to v-stacks of the algebraic construction, for which we roughly follow [Ng606]: Let (R, R™) be
any Huber pair over (K, KT) and let V be a finite free R-module of rank d. Write V@ AL for
the associated affine space over Spec(R), where A} is the affine line over Spec(R) considered
as a scheme. Any element of g ® V defines a morphism V¥ @ A}, — g ® A}, of vector groups
over R, where V'V is the R-linear dual. Composed with the quotient by G in the sense of
geometric invariant theory

g®AR = g® AR [ G = Spec(Rlg]7),
we obtain a G,,-equivariant morphism V¥ ® AL — Spec(R[g]).
Definition 8.7. Let Ay g r be the v-sheaf over Spa(R, RT) sending a perfectoid algebra
(S,5%) to the set of G,-equivariant morphisms of R-schemes V'V ® AL — Spec(R[g]“). One
verifies that this is a v-sheaf, using that O on Perfy is a v-sheaf.

Passing from schemes to v-sheaves, we obtain a natural morphism of v-sheaves on Perf i
99k V®rGer = Ave,r

that is functorial in R and equivariant for the natural G x GLy-action where G acts via the
adjoint action on g on the left and trivially on the right, and GLy acts on V' on both sides.

Let now Z be any smoothoid space over K. We apply this construction to R = O(U) for
any toric open subspace U — Z in Zg and V := H°(U,Qz). We thus obtain natural maps
of v-sheaves

g ® H(U,Qu) ®r Ga.r — Av.c.om)

that are still G x GLy-equivariant. For varying U, the Ay g o) clearly glue to a sheaf
Ag over Zg. Due to the G-invariance, the above maps then glue to a natural morphism of
sheaves on Zg;

(24) hz : Higgse — Ag.
Let now X be a smooth rigid space and consider Z = X x Y for test objects Y € Perfy.

Definition 8.8. The v-sheaf Ag (or Ag x) on Perfx defined by Ag(Y) := Ag(X xY) is
the Hitchin base for G and X. It is clear from the construction that the formation of Ag x
is functorial in both G and X. We then easily verify that hxxy is functorial in Y.

In general, the v-sheaf Ag is a diamond by Lemma 7.15. However, we have the following;:
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Lemma 8.9. Assume that X is proper, and that G is a rigid group such that the Lie algebra
g satisfies K[g]® = Kluy,...,u,] for some homogeneous generators u; of degree e;, for ex-
ample by Chevalley’s Restriction Theorem we can take split reductive G, but we can also take
commutative G. Then Ag is represented by an affine rigid space over K, namely

Ac = @ HO(X,Sym®™ Qx) @ G,.
k=1
Proof. The condition on G ensures that for any toric affinoid U € X and R = H°(U x Y, ﬁ),
we have Ay, r = [}, (Sym% V) ® A'. Gluing for a cover of X by such U, we see that
Ac = TTi- HY(X x Y, Sym® Qx«y) ® A'. We now use that X is proper and therefore
H(X,Sym®* Qx) is a finite dimensional K-vector space. It follows from Lemma 8.4 that

H(X x Y,Sym® Qxxy) = H(X,Sym® Qx) ® O(Y),
and the right hand side is indeed represented by the rigid space H°(X, Sym®* Q x) G, O

Definition 8.10. Composing the morphism of v-sheaves hx «y from (24) with the sheafifica-
tion J#iggse(Y) — Higgso(X x Y) for varying YV € Perfk, we get the Hitchin morphism
(25) H : Higgse — Ag,

a morphism of small v-stacks on Perf g that is functorial in G and X.

For G = GL,,, this recovers the earlier description since the coefficients of the charac-
teristic polynomial generate k[g]®. Indeed, these are mapped to the elementary symmetric
polynomials under the restriction map k[g]® — &[]V in Chevalley’s Restriction Theorem.
Example 8.11. If G is commutative, then we have K[g]® = K|g]. If X is proper, we then
have Ag = g ® Qx. In any case, H is for such G simply the projection to the second factor
Higgse — PBung.e X Ag — Ag where the first map is from Lemma 7.14.

8.3. The Hitchin morphism on the Betti side. On the other side of the p-adic Simp-
son correspondence, we now construct the promised Hitchin morphism for the stack of v-
topological G-bundles for any rigid group G over K.

Let Z be any smoothoid space. Combining the isomorphism HTlog from Theorem 4.1 with
the Hitchin map (22) or (24), we obtain a morphism of sheaves on Zg;

R'v.G HTlog, Higgs Lz, A
Let X be any smooth rigid space over K. Using crucially that HTlog is functorial in Z,
we see that these morphisms for Z = X x Y glue for varying Y to a morphism of v-stacks:
Definition 8.12. The Hitchin morphism on the Betti side is the morphism of v-stacks
H Bung ., = Ac
defined on Y € Perfx as the composition

Bunc.,(Y) = HN(X x Y,G) = R'G(X x V) 2%, Higgs (X x V) 2% Aq(Y)
where the first map is the passage from groupoids to sets of isomorphism classes, where
v: (X xY), = (X xY)e is the natural map, where HTlog is the isomorphism from
Theorem 4.1, and hyxxy is the sheafified Hitchin morphism on the Higgs side (22) or (24).

With this definition, the basic idea for our moduli theoretic approach to p-adic non-abelian
Hodge theory is to compare HBung,, and Jiggs, geometrically via the morphisms

PBung i

(26) e

Hi99sa H



48 BEN HEUER

By Lemma 8.9, this is particularly interesting if X is proper and G is split reductive or
commutative, as the Hitchin base A is then represented by an affine rigid space.

Proposition 8.13. The morphism H PBung,, — Ac has the following properties:

(1) H is functorial in X — Spa(K). In particular, if X has a model over a subfield
Ko C K, then H is equivariant with respect to the Aut(K|Ky)-actions on both sides.
(2) H is functorial in G. In particular, if 0 — V3 — V — Vo — 0 is a short exact sequence
of v-vector bundles, then in the notation of Remark 8.6 we have H(V) = H(V1)-H(Va).
(3) If G is commutative, then His a homomorphism of group stacks.

Proof. The functoriality follows from the analogous properties for Higgs bundles and from
functoriality of HTlog. To see part 2, we apply HTlog for parabolic subgroups G C GL,, and
use functoriality in G. On the Higgs side, the statement then follows from Remark 8.6.

If G is commutative, then HTlog is a homomorphism by Theorem 4.1, and H is a homo-
morphism of group stacks by Example 8.11. 0

The possibility of constructing a Hitchin morphism for v-G-bundles is a new idea already
for the case G = GL,, of v-vector bundles, which was suggested to us by Scholze in reaction
to an earlier version of Theorem 4.1. There are however two abelian special cases that can
be described explicitly using known results, as we now explain in detail. From now on, we
assume that K is algebraically closed and that X is a smooth proper rigid space over K.

8.4. The Hitchin morphism on the Betti side for G = G,. We first treat G = Gg:
In this case, Lemma 8.9 shows that Ag, = H°(X,Q) ® G, and by Example 8.11, the map
H : Higgsg, — Ag, is simply the projection

H : Bung, & x HO(X,Q) ® G, — H°(X,Q) ® G,.

Here PBung, ¢ parametrises étale G,-torsors on X x Y. By Lemma 8.4 for ¢ = 1, it can
therefore be identified with the v-sheaf represented by the rigid vector group H} (X, 0) @ G,.
On the other hand, the Hitchin morphism on the Betti side is of the form

H: Bung, , = HA(X,0)® G, — H'(X,Q) ® G,

and we easily see by comparing the construction of H with Scholze’s construction of the

Hodge-Tate sequence [Sch13b, §3] that this map is the morphism of rigid varieties associated

to the Hodge—Tate map HT from (2). This makes precise the idea that H generalises HT.
We deduce from these explicit descriptions that (26) takes the following form:

Proposition 8.14. Any splitting of (2) induces an isomorphism of rigid spaces (and thus of
v-stacks) Bung, ., — Higgsg, that commutes with the Hitchin fibrations.

In summary, the Hitchin morphism for G = G, encodes the Hodge—Tate sequence. This is
the precise way in which in this moduli-theoretic setting, non-abelian Hodge theory is about
generalising a p-adic Hodge theoretic result from G, to more general rigid groups G.

8.5. The Hitchin morphism on the Betti side for G = G,,,. We now turn to G = G,,
to explain the precise relation to [Heu2la]. In order to get a description in terms of rigid
spaces like for G, we pass to coarse moduli spaces: Let Bun,, , be the “coarse moduli sheaf”
of Bun, , = BungrL., v, by which we mean the functor obtained by passing from groupoids
to sets of isomorphism classes and v-sheafifying on Perfy. We analogously define the coarse
moduli v-sheaf Higgs,, of isomorphism classes of Higgs bundles of rank n on Perfyx. For
n = 1, we thus obtain on the one hand the v-Picard functor

Bun, , = Picx,
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introduced in [Heu2la, §3], and on the other hand the coarse moduli space of Higgs line
bundles

Higgs, = Picx.¢ x H(X,Q) ® G,,.

Both are representable by rigid groups over K if the usual rigid analytic Picard functor
is representable, by [Heu2la, Theorem 1.1]. For example, for algebraic X, Picy ¢ is the
diamondification of the algebraic Picard functor. There is then a natural short exact sequence

0 — Picx¢ — Picx, » H'(X,Q) ® G, — 0

of commutative rigid groups. Crucially, this sequence is not split outside of trivial cases. By
inspecting the proof in [Heu2la, §2], we see that in the language of this article, the last map
is precisely the Hitchin morphism H for n = 1, up to composition with HBun, , — Picx .

The upshot of this discussion is that in the case of G = G,,, the two Hitchin morphisms
over A} = H(X, QX) ® G, are both torsors under Picx ¢, but one is split while the other
is usually not. In particular, in contrast to the case of G = G, this shows that in general
Bun, , # Higgs,. Returning to moduli v-stacks, this is what we believe might generalise: It
seems plausible to us that for any reductive group G, the morphism H exhibits PBung,, as a
twist of F%iggs, over Ag. To recover the p-adic Simpson correspondence from this geometric
statement, one would have to see that the usual choices induce a trivialisation of this twist
on K-points. This explains the motivation behind Conjecture 1.12.

8.6. The rigid analytic representation variety. Our final goal in this article is to obtain
from the morphism of v-stacks H a morphism of rigid analytic spaces by passing from PBung .,
to the rigid analytic representation variety.

Definition 8.15. Let I' be a profinite group. Let G be a rigid group over K. We denote by
om(T, G)

the inner Hom sheaf on Perfg , where I' is considered as a profinite v-sheaf and G as a
diamond. This sends a perfectoid space Y to the Y-linear homomorphisms 7 xY — G. Let us
say that a homomorphism I' — G(Y") is continuous if it comes from a morphism of adic spaces
of this form. To justify this name, we observe that if G C GL,, is a linear algebraic group,
then s#om(T", G)(Y) is the sheaf on Perfy sending a perfectoid space Y to Homs(I', G(Y)),
where G(Y) is endowed with the subspace topology of GL,,(Y) C M, (O(Y)).

Proposition 8.16. Let I" be any profinite group. Let G be a rigid group over K. Then
(1) The v-sheaf H#om(T', Q) is a diamond.
(2) IfT is topologically finitely generated, then Zom(T, G) is represented by a semi-normal
rigid space over K. We call this the continuous representation variety of I.

Proof. Let v := (v:)icr be a set of algebraic generators of I', not necessarily finite. Then
we have an injection ev(y) : Hom(I',G) — [][; G of v-sheaves, where ev(y) denotes the
evaluation map p — (p(7;))ier. By [Sch22, Lemma 11.22], the right hand side is a diamond,
thus so is the left hand side by [Sch22, Proposition 11.10]. This proves part 1.

For the proof of part 2, let T'y be a dense subgroup of I" with generators g = (g1, ..., gr)-
Step 1: Reduction to the case that I' = fo is the profinite completion of I'y. By the Theorem of
Nikolov—Segal [NS07], any finite index subgroup of I" is open, so profinite completion induces
a surjective, open, continuous homomorphism ¢ : fo — I'. We deduce that for any set of
generators a = (a;);er of ker ¢, a continuous map from T is the same as a continuous map
from fo that vanishes on the a;. We thus have a left-exact sequence

0 — Hom(T,G) — Hom(To, G) = 61,
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If the Proposition holds for fo, this shows that ##om(T", G) is the kernel of a homomorphism
from a rigid group to a product of adic groups, hence is itself represented by a rigid group.
Step 2: Deformations of the trivial representation. By Corollary 3.4 and Proposition 3.6, there
is an open subgroup G C G of good reduction and a basis of neighbourhoods given by open
subgroup (G, )nen of G* such that G, /Gy41 =g/ := g¢ /g7 for some t > 0.

Lemma 8.17. Let (R, R%) be any perfectoid K-algebra. Then any group homomorphism
p:To = Go(R) extends uniquely to a continuous morphism p: T — Go(R).

Proof. By Lemma 3.7, it suffices to see that each p,, : Tg — Go(R) = Go/G,(R) is continuous,
i.e. has finite image. For this we argue by induction on n.

For n = 1, the group Go/G1(R) = @/ (R) is an abelian torsion group. As I'y is finitely
generated, it follows that any map ¢ : [y — g, (R) has finite image. Thus ker ¢ is a finite
index subgroup, which is open by the assumption I' = fo. This gives the case of p;.

For the induction step, we consider the short exact sequence obtained from Proposition 3.6

By induction hypothesis, the image im(p,,) of I'g on the right is finite, so H := ker(p,) is a
finite index subgroup of I'g. In particular, H is again finitely generated. The restriction of
pnt1 to H factors through g; (R), and thus has finite index kernel by the induction start.
This shows that ker p,,41 contains a finite index subgroup, hence is open. O

Hence s#om(T", Go) = Hom(Ty, Gy) is represented by a Zariski-closed subspace of the space
(Go)" parametrising the images of the g;, cut out by the relations between the g;.
Step 3: The general case. Consider now any finite index subgroup H C I'g and let Fy C
Hom(T", G) be the open subfunctor defined as the preimage of #om(H,Gy) C #om(H,G)
under the restriction map resy : #om(I',G) — H#om(H,G). Then by continuity, we have
an equality of sheaves Jom(I',G) = hAl H<Tq Fy where H ranges through the finite index
subgroups of I'g. It thus suffices to prove that each Fjy is representable by a semi-normal
rigid space; the transition maps in the colimit are then clearly open immersions. For this
let s = (s1,...,5) be a finite set of generators of H, and for each k = 1,...,[ let ws,(g) be
the group-theoretic word expressing sy in terms of the generators g = (g1,...,9,) of T'g. Let
E C G" be the Zariski-closed subspace cut out by the relations between the g;. Then

Gr Ws Gl

B
ev(gﬁ Jeveo

Fy ——=1 HHom(H, Gy)

is a Cartesian diagram. It follows that Fy is represented by the fibre product in rigid spaces.
Let us denote the latter by Xy . It remains to pass from Xy to its semi-normalisation:

Lemma 8.18 ([KL16, Remark 3.7.3][SW20, p.78]). The inclusion
{semi-normal rigid spaces over K} — {rigid spaces over K}

admits a right-adjoint, the semi-normalisation functor —". For any rigid space X, the co-unit
map induces an isomorphism X"¢ — X<,

Proof. After replacing X with its reduced subspaces X™9, it suffices to construct this on
reduced rigid spaces. Any reduced commutative ring A has a semi-normalisation A" with
the desired universal property by [Swa80, Theorem 4.1], and the map A — A" is subintegral,
hence finite since A is excellent. Thus A" is again of topologically finite type over K. This
glues since seminormality is stable under rational localisation [KL16, Proposition 3.7.2]. O

It follows that the semi-normal rigid space X35 represents J#om(m, G). d
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Returning to the p-adic Simpson correspondence, we wish to apply Proposition 8.16 to the
étale fundamental group I' = 7{*(X) of a smooth proper rigid space X. In this situation, the
algebraic conditions imposed on I' apply in decent generality:

Corollary 8.19. Let X be the rigid analytification of a smooth proper K -variety. Then the
v-sheaf om(m$t(X), G) is represented by a semi-normal rigid space.

Proof. By the Lefschetz principle, we can assume that X has a model Xy over a subfield
Ko C K such that there is an isomorphism of fields Ky = C. By invariance of 7$* under
extension of scalars, 7¢¢(X) is then the profinite completion of the topological fundamental
group of the compact Kahler variety Xo(C), which is finitely generated. O

Question 8.20. Let X be any (smooth) proper rigid space over K. Is the étale fundamental
group 7§t (X) topologically finitely generated? If yes, then Corollary 8.19 holds for such X.

8.7. The Hitchin morphism for representations. Finally, we explain how for the an-
alytification X of a connected smooth proper variety over a complete algebraically closed
field K over Q, with fixed base point x € X (K), the Hitchin morphism H attaches to any
continuous representation 7 := m$*(X,z) — GL, (K) a set of “Hitchin-Hodge-Tate weights”
in a way that is compatible in families. The key to this is the following relation between
G-representations of 7$*(X, ) and v-G-bundles:

Definition 8.21. Let G be any rigid group. There is a natural morphism of v-stacks
o Homes(m,G) = PBung

defined as follows (cf. [Heu22b, Theorem 5.2] for G = GL,): Let X — X be the pro-finite-
étale universal cover from Remark 4.4.2, which is a 7-torsor in a natural way. For any
Y € Perfg, consider the projection ¢ : X x Y — X x Y as a w x Y-torsor relatively over the
base Y. Then «(Y) sends any continuous homomorphism p : 7 X Y — G over Y in the sense
of Definition 8.15 to the G-torsor on (X x Y'), defined by pushout of ¢ along p.

Theorem 8.22. Let G be a rigid group over K satisfying the assumptions of Lemma 8.9,
for example G could be reductive, or commutative. Then H o« defines a canonical morphism
of rigid analytic spaces

H : Aom(78 (X, z),G) — Ag
from the continuous G-representation variety of n$'(X,x) to the Hitchin base. Moreover:

(1) H is functorial in G and X — Spa(K).

(2) For any continuous representations p1,ps : 75'(X,x) — G(Y) over a perfectoid space
Y for which there is a finite index subgroup T' C 7% (X, x) such that the restrictions
pi|r ~ pajr become conjugated over a v-cover Y' —'Y, we have H(p1) = H(ps).

(3) If G is commutative, then H isa group homomorphism.
(4) If G = GL,, then for any short exact sequence of representations p1 — p — pa, we
have H(p) = H(p1) - H(p2) where - is the product on A, defined in Remark 8.6.

Proof. The composition Hoa : #om(r$ (X, z),G) — Ag is a morphism of v-sheaves over K.
Both sides are represented by semi-normal rigid spaces by Corollary 8.19 and Lemma 8.9. As
diamondification from semi-normal rigid spaces to v-sheaves over K is fully faithful [KL16,
Theorem 8.2.3][Sch22, Proposition 10.2.3], this defines a unique morphism of rigid spaces.

Parts 1 and 4 are then immediate from Proposition 8.13. Part 2 follows from functoriality
in X: After pullback to the finite étale cover X’ — X corresponding to I', and any choice of
lift 2’ of x to X', the representations define the same element in Zom(r$*(X’,2'), Q). Since
the natural map Ag x (R) — Ag.x(R) is injective, it follows that H(p1) = H(ps).
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For part 3, it suffices by part 2 to prove this on an open subgroup Gy C G on which exp
is defined. As K[g]“ = K]lg], we have Ag, = Ag = G, ® g ® Q, and the result follows by
functoriality from the morphism exp : Gg — g ® G, and the case of G,. O

We believe that H encodes deep arithmetic information in a geometric way. Indeed, from
known instances of the p-adic Simpson correspondence, one can extract the following:

Example 8.23. (1) For G = G,,, it follows from §8.5 that H is the homomorphism from
[Heu2la, Theorem 1.7], hence fits into an exact sequence of rigid group varieties

0 — Pickt s — Homes(m,Gm) 2 HY(X,Q) @ G, — 0.

In particular, H is then a torsor under Pict)g,ét, the topologically torsion Picard variety.
For curves, the first map is a geometric incarnation of the Weil pairing of the Jacobian.

(2) If a representation p : m — GL,, (K) has abelian image, then H(p) can be described in a
way that is closely related to the abeloid p-adic Simpson correspondence of [HMW23]:
In this case, K™ can be decomposed into simultaneous eigenspaces. Let A; : m — K x
be the corresponding characters and set a; := H()\;) € H°(X,Q), then it follows from
Proposition 8.13.3 that H(p) is given by the coefficients of (X — ay)--- (X — an).

(3) If X has a model X over a discretely valued subfield of K, then any representation
p:m™ — GL,(Q,) associated to a Q,-local system L over Xy lands in the fibre over 0 by
Galois equivariance in Theorem 8.22.1, giving a different perspective on why the Higgs
field associated to L by the p-adic Simpson functor of Liu—Zhu [LZ17] is nilpotent.

(4) Similarly, all the representations in the image of Deninger—Werner’s functor [DW20]
are also in the fibre over 0, because the associated Higgs fields vanish. This includes
all representations with finite image, for which this also follows from Theorem 8.22.2.

If X is a smooth proper curve of genus g > 2, we think it is plausible that Example 8.23.1
generalises to GL,, for n > 1, namely that H could generically on Ag be a torsor under a
certain rigid group related to the spectral curve. We will pursue this further in part II.

8.8. Relation to the complex Corlette—Simpson correspondence. In complex geom-
etry, the Corlette—Simpson correspondence for a smooth projective variety X over C is an
equivalence of categories between finite dimensional complex representations of the topologi-
cal fundamental group m1(X) on the one hand (“Betti side”), and semi-stable Higgs bundles
on X with vanishing Chern classes on the other (“Dolbeault side”) [Sim94]. It can be regarded
as an analogue of the Hodge decomposition for non-abelian coefficients.

More generally, the Corlette-Simpson correspondence can be generalised to an equivalence
of G-representations and G-Higgs bundles for any reductive group G over C [Sim92]. However,
we are not aware of an extension to general complex Lie groups. From this perspective, it is
arguably somewhat surprising that our result holds in the given generality. This is one reason
why in the introduction we were cautious and imposed a condition that G is reductive in the
globalisation of Theorem 1.2 to proper X.

Regarding moduli spaces, the Corlette—Simpson correspondence for GL,, induces for any
smooth projective variety X over C a canonical and functorial homeomorphism

(27) Mg (C) = Mp,I(C)

between the Betti moduli space of complex representations of the topological fundamental
group 71 (X) of dimension n on the one hand, and the Dolbeault moduli space of semi-stable
Higgs bundles on X of rank n with vanishing Chern classes on the other [Sim94]. However,
even though both sides have natural complex analytic structures, the correspondence does
not respect these: In fact, the analogue of H in this setting would be the composition
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Mz(C) =5 Mpa(C) 2 A, (C)

of the Corlette-Simpson correspondence with the Hitchin morphism. But this fails to be
complex analytic already for line bundles on curves [Sim92, Example on p21]. In particular,
the above homeomorphism cannot be upgraded to an isomorphism between moduli stacks.

From this perspective, we find it very surprising that H exists as a morphism of rigid
analytic spaces: This seems to be a stronger statement than what is possible in the complex
theory. It thus appears that the correspondence over K is less canonical as it requires the
choice of lift of X, but on the other hand preserves more structure.

8.9. Relation to Sen theory. In order to provide more context for the Hitchin—-Hodge—Tate
map, we now briefly sketch how the above construction is related to Hodge—Tate—Sen weights:
Let L be a p-adic local field and let Lo,|L be the extension obtained by adjoining all p-
power roots of unity. Let C' be the completed algebraic closure of L. Classical Sen theory
associates to any semi-linear representation of the Galois group G, of L on a finite dimensional
C-vector space W an Ly,-vector space E = Dgen (W) such that E®y_C = W together with
an Leo-linear operator 6 : E — E (see [Sen81]). We call (F,f) a Sen module, and the
Hodge-Tate—Sen weights of W are defined as the generalised eigenvalues of 6.

The construction of (E,#) is very similar to the small p-adic Simpson correspondence, and
one can turn this analogy into a more precise comparison: Consider the adic space X =
Spa(L), then we can make a very similar construction for X (the “arithmetic setting”) as we
did for smooth rigid spaces over C in the last section (the “geometric setting”): The pro-finite-
étale cover X — X of the last section is for X = Spa(L) simply the cover Spa(C) — Spa(L).
Like in Definition 8.21, one obtains by descent along this cover an equivalence

{Semi—linear representations of G,

on fin. dim. C-vector spaces } - {v—vector bundles on Spa(L)}.

On the other hand, a result of Tate in Galois cohomology [Tat66, Theorem 1] can be inter-
preted as saying that for v : X, — Xg, we have R'v,O = O and R*v,O = 0. From the
point of view taken in this article, it would therefore be sensible to define Qx = R'v, 0 = O,
so that according to Definition 2.10, a Higgs bundle on X¢; for this notion of “differentials’
would be a vector bundle E on Xy together with an endomorphism of E. In particular, from
such a Higgs bundle, we get a Sen module by base-changing the global sections to L.

Going through the construction of the Sen module Dgq, (W), one now sees that one can
interpret this as being obtained from a “local p-adic Simpson correspondence on the space
X = Spa(L)”: The coefficients L, appear since one needs to go up the cyclotomic tower
Loo|L to make the v-vector bundle small, as with the toric tower in the geometric setting.

Carrying out the analogous constructions of the last section in the arithmetic setting now
yields the map that sends a semilinear G -representation W to the characteristic polynomial
of its Sen operator 6, which is an equivalent datum to the Hodge-Tate—Sen weights. This is
the precise sense in which the Hitchin—-Hodge—Tate morphism His conceptually analogous in
the geometric setting to sending a G -representation to its Hodge—-Tate—Sen weights.

APPENDIX A. RECOLLECTIONS ON NON-ABELIAN CONTINUOUS COHOMOLOGY
In this appendix, we recall some generalities on non-abelian group cohomology sets.

Definition A.1. Let I" and A be not necessarily abelian topological groups, written multi-
plicatively. Assume that we have a continuous left-action of I" on A, i.e. a group homomor-
phism I' — Aut(A) such that the induced morphism I' x A — A is continuous. For g € T,
a € A, we write ga for its image under this map. Then the set of continuous 1-cocycles is

ZL (T, A) := {continuous maps ¢ : I' = A | c(gh) = c(g) - ge(h)}
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The continuous group cohomology set HL (T, A) := 2L (T, A)/ ~ is then defined as the
quotient by the following equivalence relation:

f~fledacA: atflg)-ga=f'(g) forall g €T.
For any continuous 1-cocycle ¢, we denote its cohomology class by [c].

Definition A.2. Let B be a topological group with continuous I'-action and let A C B be a
normal subgroup that is preserved by the action of I'. Let b € Z. (T, B) be any continuous
1-cocycle. Then we denote by ,A the I'-module with underlying group A equipped with the
b-twisted action, given for g € T', a € A by g *, a := b(g) - ga - b(g) ™!, where the right hand
side is calculated inside B.

Proposition A.3 ([Ser94], §5.5). Let ' be a topological group, and let0 - A — B — C — 0
be a short exact sequence of (not necessarily abelian) topological groups with continuous left-
I'-actions such that all maps in the sequence are I'-equivariant. Then:
(1) There is a short exact sequence of pointed sets
0— A" - BY — " — HL (T, A) — HL, (T, C).
(2) Let b € ZL (T, B), then the subset of elements of HL(T, B) with the same image as b
in H}

cts
cts

(T, B) — H}

cts

(T, C) is in natural bijection with the set of elements of HL (T, A).
(3) Assume that A is abelian and let c € ZL (T, C), then there is a class A(c) € H24(T, . A)
that vanishes if and only if [c] is in the image of HL (T, B) — HL(T,C). The class

cts
A(c) is canonical and functorial both in T and in the sequence.

One natural way that continuous group cohomology arises in practice is that it can be
used to describe Cech-cohomology for Galois covers with group I' for non-abelian sheaves, by
a non-abelian version of the Cartan—Leray spectral sequence:

Proposition A.4 ([Heu22b, Proposition 2.8]). Let g : X — Y be a morphism of diamonds
over K that is Galois for the action of a locally profinite group I' on X. Let F be a sheaf of
(not necessarily abelian) topological groups on'Y, with the property that for i = 1,2 we have

F(X x ') = Mape (I, F(X)),

for example this holds if F is represented by a rigid group over K that admits a locally closed
embedding as a rigid space into some affine space A" (e.g. any linear algebraic group, or rigid
open subgroup thereof ). Then there is a left-exact sequence of pointed sets

0— HL.(T,F(X))— HNY,F) = H:(X, F).

cts

Proof. The only part that is not proved in the reference is that F satisfies the displayed
condition if it embeds into A™. It suffices to prove this for ¢ = 1 and X in the basis of affinoid
perfectoid spaces. By the known case of F = O, we then have a commutative diagram

Mapcts (F7 ]:(X)) — Mapcts(r7 on (X))

1

Morg (I x X, F) — Morg(I' x X, A").

By evaluating at all points g € I, we get the dotted arrow in the diagram: Here the continuity
holds because the assumptions ensure that F(X) C O™(X) inherits the subspace topology.
Also due to the locally closed assumption, we can check on points whether a map I'x X — A™
factors through F. This shows that the morphism on the left is surjective. O

For our applications, the Galois group is often = Zg. In this case, one has the following
description of continuous cohomology, see the proof of [Sch13a, Lemma 5.5]:
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Lemma A.5. Let A = Zg be topologically generated by elements v1,...,vq. Let R be a p-
adically complete Z,-algebra and let M be a p-adically complete R-module with a continuous
R-linear A-action. Then RTs(A, M) is computed by the complex

Cgrp:: [M%M®RRd~)M®R/\2Rd*>,..ﬁM@RAde]

whose k-th transition map is given by m®e;; A---Neg, — Z;l:l(vj —1)ym®e;, A---Nej, Nej.
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